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Introduction

Abstract

Chromosomal species of the mole rat, Spalax ehrenbergi, in Israel have been
shown to display distinct adaptive strategies to increasing aridity. This adaptive
radiation appeared to be associated with an increase in allozymic heterozy-
gosity. In the present study, the developmental stability (DS) estimated by
fluctuating asymmetry (FA) of dental traits was used to assess the suitability of
habitat and the efficiency of adaptation to local environmental conditions
among populations and chromosomal species. Although FA levels were highly
heterogeneous among populations, they were not found to differ between
species. DS of populations appeared, however, to be impaired at higher
altitudes and in indurate soils. Since these environmental features were
largely covariant, the effect of each one could not be precisely determined.
Interestingly, while aridity is considered as the major selective force acting on
populations southwards, DS was not altered under arid conditions, suggesting
that mole rat populations were adapted to their local conditions of aridity.
However, the cline of aridity is matched to several environmental and genetic
clines among which are the increasing heterozygosity and recombination rate
among species southwards. In studies of natural populations, the potential
complementary effects of environmental and genetics on DS have to be
considered and hamper the interpretation of habitat suitability expressed by
DS in terms of adaptive strategies.

sented by the cool and semihumid Golan heights
(2n = 54) and the arid Negev desert (2n = 60I). Stud-

The subterranean mole rat Spalax ehrenbergi superspecies
in the Near-East is probably the most documented model
of chromosomal speciation associated with an adaptive
radiation (see Nevo, 1991, for review; Nevo et al.,
1994a,b, 1995). Five chromosomal species present a
southward trend of increasing chromosomal number in
Israel (2n = 52, 54, 58 and 60I) and Northern Egypt
(2n = 60E) (Fig. 1). Each of these species occurs in
distinct climatic regions, the two extremes being repre-

Correspondence: Jean-Christophe Auffray, Institut des Sciences de I’'Evo-
lution, CC064, Université Montpellier 2, 34095 Montpellier Cedex 05,
France.

Tel: (33) 4 67 14 47 82; fax: (33) 4 67 14 36 22;

e-mail: auffray@isem.univ-montp2.fr

J. EVOL. BIOL. 12 (1999) 207-221 © 1999 BLACKWELL SCIENCE LTD

ies on numerous characters including physiological,
ecological and behavioural traits have shown that each
of the chromosomal species of Israel displays distinct
adaptive strategies underlying the adaptive radiation into
four climatic regimes associated with the chromosomal
speciation process within this superspecies. Among the
chromosomal species, the genetic diversity increases
southwards, toward xeric environments (Nevo & Cleve,
1978; Nevo et al., 1996). More precisely, heterozygosity
positively correlates with aridity stress, climatic unpre-
dictability and increased steppic conditions (Nevo et al.,
1994b, 1995). Recently, the chiasma frequency was
shown to increase with chromosomal number among
species (Nevo et al., 1996). It has been hypothesized that
the adaptation of species to a more xeric environment at
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Fig. 1 Distribution of chromosomal species of Spalax ehrenbergi in
Israel and Egypt and sample locations.

each step of increasing diploid number could be favoured
by the higher level of genetic diversity amplified and
maintained by the increase in recombination rates
related to higher 2n. This phenomenon does not seem
to be limited to this superspecies: S. leucodon studied in
Turkey clearly exhibits the same trend of increasing
diploid number associated with an increase in genetic
diversity toward arid, contrasted and thus stressful
environments (Nevo et al., 1994b, 1995).

Responses to a new environmental stress at individual
or population levels are required to avoid extinction or to
allow the colonization of new areas characterized by
different environmental features than those of the
original range. Stress responses are complex and could
result in several kinds of adaptation according to the
types of selection induced (see Hoffmann & Parsons,
1991, for review). Apart from stress evasion, adaptation

results from a selection for stress resistance (Hoffmann &
Parsons, 1991) extending the tolerance of the species to
more extreme habitats.

A relevant measure of habitat suitability in wild
populations can be provided by the estimation of the
level of developmental stability of morphological char-
acters (Parsons, 1990a, b; Hoffmann & Parsons, 1991;
Graham et al., 1993). Developmental stability is a com-
ponent of the developmental homeostasis which is
defined as the ability of an organism to withstand genetic
and environmental disturbances encountered during
development, so as to produce a predetermined optimum
phenotype (Zakharov, 1989). The other component of
the developmental homeostasis is canalization, referring
to the processes by which consistent phenotypes are
produced despite the variability of genetic and environ-
mental conditions. The developmental stability of organ-
isms, often estimated by fluctuating asymmetry (FA)
levels, i.e. the variability of the distributions of right-
minus-left measurements of normally symmetrical bilat-
eral characters, is known to be dependent on both
genetic and environmental conditions (see Parsons,
1990a,b; Markow, 1995, for review). The impairing
effect of environmental stresses, e.g. thermic and audio-
genic stresses, protein deprivation or pollution, on
developmental stability has been established on a wide
variety of organisms (see Parsons, 1990a, for review).
Concerning the genetic basis, it has been shown that the
level of developmental stability of organisms is related to
both genomic heterozygosity and coadaptation (Palmer &
Strobeck, 1986; Clarke, 1993). The role of genomic
coadaptation has clearly been established by studies of
hybrid zones which reported that coadaptive gene com-
plexes in hybrid populations were disrupted inasmuch as
parental taxa were highly divergent (see Graham, 1992,
for review). In contrast, the role of heterozygosity is still
debated (see Clarke, 1993, for review). Several examples
exist in wild populations (Kat, 1982; Vrijenhoek &
Lerman, 1982) in which a cline of heterozygosity
matches that of developmental stability. In these cases,
the developmental instability is believed to be imputable
to the high level of homozygosity subsequent to founder
effects in marginal populations. However, Clarke (1993)
suggested that it could rather result from the fixation of
deleterious recessive alleles or from environmental
stresses in these nonoptimal habitats and emphasized
that, for developmental stability studies, the ‘use of
natural populations is fraught with danger unless there is
a good understanding of the genetic structure and
evolutionary history of the populations under
examination.’

The evolutionary history of the S. ehrenbergi super-
species is well known and may be a relevant model to
discuss the effect of genomic and environmental stresses
on the developmental stability. In contrast with the
examples cited above, in which heterozygosity levels in
natural populations decrease towards marginal and
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stressful environments, heterozygosity in the mole rat is
believed to be a major component of adaptation to a
more xeric and unpredictable environment southwards
(Nevo & Beiles, 1988). In order to appraise the suitability
of the various habitats of S. ehrenbergi, we estimated the
level of developmental stability among several natural
populations over the Near-Eastern range of the species.
Additionally, the relationships between the level of
developmental stability and several environmental fea-
tures were studied to determine which of the latter may
be considered as stressful. The quality and the efficiency
of the distinct adaptive strategies displayed by popula-
tions and chromosomal species in response to their local
environmental conditions — with special emphasis on the
increase in aridity southwards — is then discussed with
respect to the heterozygosity levels previously estimated
for all localities considered in this study (Nevo et al.,
1994a) as well as in the light of the evolutionary history
of the chromosomal radiation.

Materials and methods

Samples

A total of 15 samples (Table 1) grouping 340 individuals
belonging to the five chromosomal species of the Spalax
ehrenbergi superspecies in Israel and Egypt were exam-
ined in this study. These animals represent all those
available in the S. ehrenbergi collection of E. Nevo at the
Institute of Evolution (University of Haifa). Several
authors have underlined the biases related to the use of
museum collection material for studies on developmental
stability (Swaddle et al., 1994, 1995; Simmons et al.,
1995). Particularly, pooling samples of different years or
seasons may confound different environmental condi-
tions. Swaddle et al. (1994) recommended comparing the
subsamples of different years from a single locality before
pooling them into a total sample. As for most subterra-
nean rodents, S. ehrenbergi is difficult to capture and
collecting an adequate sample size over the range of the
superspecies in Israel and Northern Egypt requires
several years of trapping. The samples considered in this
study were trapped over 3-10 years (median: 6) from
1979 to 1991 and yielded too small sample sizes to test
the year effect within localities.

Measurements

Fluctuating asymmetry was independently estimated on
eight tooth measurements: the maximum length and
width of the three lower molars (LM1, WMI1, LM2,
WM2, LM3, WM3) as routinely used in studies of FA in
rodents (Bader, 1965; Alibert et al., 1994, 1997; Auffray
et al., 1996) and the transversal (TI) and anterioposterior
(API) diameters of the incisor. Molar measurements were
taken using a Nikon measuroscope (0.001 mm) by S.R.
and incisor measurements using a Mituyo calliper
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(0.01 mm) by J.-C.A. Some of the teeth were missing
or broken depending on the preservation of skulls, which
resulted in unequal sample sizes (Table 2). In Spalax,
incisors are hypsodont, i.e. palliating wear, they grow
during the lifetime of an individual. We do not have any
evidence on the conservation of FA along the incisor. TI
and API measurements were taken as close as possible to
the incisor gap.

Measurement error appraisal was based on Palmer
(1994). Using individuals from the locality ANZ, all
measurements were taken twice during two different
sessions. A mixed model anova was performed for each
trait considering the individual as the random effect, the
side as the fixed one and their interaction. The signifi-
cance of the interaction variance showed that the
difference between sides varied more among individuals
than would have been expected given the size of the
measurement error (Palmer, 1994). Moreover, the results
of these anovas allow us to express the nondirectional
asymmetry and the error of measurement in terms of the
percentage of the total variance for each character. Error
measurement was performed several months after the
estimation of FA levels reported here. Although some
additional individuals have increased the sample size for
this locality, most incisors have been used for enamel
analyses rendering them unavailable for appraisal of
error. Consequently, the error estimation was based on
37 individuals for the first two molars, 23 for the third
molar and 12 for incisor.

Statistical treatments

The FA is assessed by any estimator of the range of
variability of the right-minus-left (R — L) distribution of a
symmetrical bilateral character. However, this variability
may not only represent the fluctuating asymmetry.
Several preliminary tests have to be conducted before
one may estimate and test levels of FA among characters
and samples. The procedure we followed is largely based
on Palmer & Strobeck (1986) and Palmer (1994) who
exhaustively depicted the successive steps in the estima-
tion and statistical comparison between FA levels among
samples. Here, we have considered eight parameters and
15 samples leading to 120 distributions of (R — L) and
consequently to 120 FA indices.

Normality assessment. Our samples cumulated several
years of capture. Ross & Robertson (1990) have reported
that some hybrid ant populations exhibit leptokurtic
(R = L) distributions which may have resulted from
pooling populations characterized by different levels of
developmental stability (Graham, 1992). Without apply-
ing a sequential Bonferroni test, the normality of 23 out
of the 120 distributions was rejected using the Dallal and
Wilkinson approximation of the Lilliefors test (Sokal &
Rohlf, 1995). Additionally, among the remaining normal
distributions, 13 were shown to be skewed and/or
leptokurtic. We considered this result as unsatisfactory
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from a biological point of view but also from a statistical
one, since we intended to test the population and species
effects by applying anovas. However, from a biological
point of view, the rejection of normality for the (R — L)
distributions might be more likely to be the result of the
very heterogeneous levels of tooth wear observed on this
material than of the pooling of samples exhibiting
different directional asymmetry (DA) indices or antisym-
metry (AS) patterns. DA occurs when one side of a
bilateral character is systematically larger than the other,
while in AS, which also corresponds to a systematic
deviation from symmetry, the side that is larger varies at
random among individuals (Palmer, 1994). Conse-
quently, the test of Grubbs (1969; Sokal & Rohlf, 1995)
for detecting outlier observations was applied to each of
the 120 distributions. By using this procedure, 28
individual asymmetries were detected as outliers out of
the total of 2377, i.e. only 1.2% of the whole data set,
and these were excluded from further analyses.

Normality for each of the 120 resulting (R - L)
distributions was tested using the Dallal and Wilkinson
approximation of the Lilliefors test of normality (Sokal &
Rohlf, 1995). Skewness and kurtosis were estimated and
tested for all these distributions.

Directional asymmetry was tested within each of the 120
distributions of (R — L) by a f-test, the null hypothesis
being the equality between the mean of distribution and 0.

Size dependence of FA was appraised within and among
populations for each variable. The within-sample depen-
dence was tested by the significance of the linear
regression of |R —L| on (R + L)/2. Size dependence
among samples was assessed by the linear regression
between the mean of (R + L)/2 and log(var(R — L)).

During these preliminary treatments, numerous statis-
tical tests were performed increasing the occurrence of
type 1 error. A sequential Bonferroni technique would
have been too conservative if, as proposed by Palmer
(1994), it was applied over the 120 related statistical tests
performed at each step of these preliminary treatments,
i.e. appraisals of normality, skewness, kurtosis, direction-
al asymmety, and size dependence within samples.
Rather, and in order to establish independently the
response of the traits at each step of this procedure, we
conducted a Bonferroni test on each collection of k = 15
sample-related tests according to Rice (1989).

FA assessment and testing. Following the recommenda-
tions of Palmer (1994), two indices of FA, FA1 and FA4,
were retained in this study. The FA1l index corresponds
to the mean of the |[R — L| distribution and is considered
as being probably the most generally useful index for
moderate to large sample sizes (Palmer, 1994). FA4
corresponds to the variance of the (R — L) distribution.
This index is more sensitive to sample size but, in contrast
to FAI, it is unbiased by DA.

The most appropriate way to test the differences of FA
among chromosomal species and localities was to per-
form for each variable a two-level nested anova on the
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[R — L| data sets used to calculate FAl. However,
considering all traits together, we also performed a
Levene’s test as suggested by Palmer (1994). This test
corresponds to a two-way model anova performed on
the total |R — L| data set, implying locality and trait as
fixed effects and their interaction. To test the differences
among species, the same procedure was applied but the
locality effect was replaced by the chromosomal species
one.

Finally, Kendall’'s coefficient of concordance was
applied to test the concordance of FA indices, for FA1
and FA4, respectively, for the eight characters among
populations. This allowed us to establish for each sample
a synthetic ranking Rj of FA level over all traits which
corresponds to the sum of the ranking each sample has
obtained for all parameters.

Relationships between FA, genetic and environmental fea-
tures were appraised among populations by correlation
tests between these features and FAl indices for each
trait independently. Gamma correlation tests of rank
(Siegel & Castellan, 1988) were also performed between
each genetic or environmental variable and the sum of
ranks Rj. The effect of the hardness of soils was tested by
a Kruskall-Wallis analysis on each FA trait as well as on
Rj, considering two groups of populations, those living in
hard soils (basalt and terra rossa) versus those in light
ones (rendzina, loess and marl). We also tested the
relationships among samples between FA levels consid-
ered trait by trait and heterozygosity estimates considered
locus per locus for 25 polymorphic loci as provided by
Nevo et al. (1994a) for subsamples of those used in the
present study (Ada, Adk, aGpdh, Ald, Ap-1, Ap-2, Est-3, Est-
4, Got-1, Got-2, G6pdh, Hk-2, Idh-1, Ldh-1, Mdh-1, Mdh-2,
Me-1, Me-2, Mpi, Np, Pgi, Pgm-1, Pglm-2, Sdh, 6Pgdh).

When P values are not provided, they are encoded as
follows: *: P < 0.05; **: P < 0.01; ***: P < 0.001.

Results

Preliminary treatments

Following the exclusion of outliers and the application of
the sequential Bonferroni correction per traits, the
normality was rejected for one distribution (trait TI for
sample EGY). Also, three (R — L) distributions were
skewed and leptokurtic (TI and LM2 for JER and TI for
LAH) and one was leptokurtic (API for CAR) (Table 2). TI
trait thus appeared often to depart from a normal
distribution. However, we did not consider this as
sufficient evidence to remove TI trait from the data set,
but rather that it required special care.

None of the 120 means (R — L) statistically differed
from 0 after having applied the sequential Bonferroni test
(Table 2). Similarly, none of the 120 linear regressions of
IR — L| on (R + L)/2 was significant, revealing the inde-
pendence of size character and asymmetry within sam-
ples (Table 2). The F value of the linear regression of
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log(var(R — L)) on mean((R + L)/2) was significant only
for API (F = 5.58, d.f. 1,13, P = 0.034). Applying the
Fisher method for multiple independent tests (Manly,
1985) (y* = 17.5, d.f. 16, P = 0.35), no significant size
dependence of FA among traits was shown.

The interaction term of mixed model anovas to test the
error of measurement was highly significant for all traits
(107*? < P < 107°) indicating that the difference between
sides varied much more among individuals that would
have been expected given the measurement error. Over
all traits and on the subsample used for the estimation of
measurement error, the nondirectional asymmetry ex-
plains between 1.61% (trait API) and 5.66% (LM1) of the
total variance, while the error of measurement accounts
for 0.14% (API) and 1.5% (LM1).

FA levels among populations and chromosomal
species

Estimates of FA1 and FA4 for all localities are provided in
Table 2. The unbalanced and two-level nested (locality
within chromosomal species) aNova on the |R — L| data
set indicated that FA levels were strongly heterogeneous
among localities (Table 3). The chromosomal species
effect, even if significant for the trait API, may not be
considered as significant over all traits (after applying the
Fisher method for combining independent tests), where-
as the population effect remained highly significant
(Table 3).

The Levene’s test using locality and trait has shown
that these effects and their interaction were significant
(locality: F = 2.95***, d.f. 14,2257; trait: F = 4.24%*%,
d.f. 7,2257; interaction: F = 1.48***, d.f. 98,2257).
When the species effect replaced the locality effect, it
was not significant (species: F = 2.37 ns, d.f. 4,2345;
trait: F = 4.62***, d.f. 7,2345; interaction: F = 2.32 ns,
d.f. 28,2345).

Additionally, Bonferroni-Dunn tests performed on
each pair of localities showed that some of the popula-
tions exhibiting the highest levels of FA (QUN (2n = 54)
and JER (2n = 60I)) were significantly different from
those exhibiting the lowest levels (LAH (2n = 601I), ZIP
(2n = 58), CAR (2n = 58), ANZ (2n = 60I) and EGY
(2n = 60E)). The pattern of significantly differing pop-
ulations showed no species-related pattern of develop-
mental stability.

FA levels among traits

The significance of the trait effect at the preceeding step of
the treatments indicated that some traits were better than
others for revealing differences among localities. The plot
of FA levels established over the all-individual dataset
(not shown here) clearly indicated that FA exhibited by
the TI trait was the lowest. It remains difficult, however,
to relate the relatively important level of statistical
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Table 3 Nested anovas on |R — L| data sets per trait (Fisher Method: see text; Fs’, d.f’. see Sokal & Rohlf, 1995).

Species Locality
Traits d.f. num d.f’ Fs”’ P d.f. num d.f. Fs P
AP| 4 3.8 10.55 0.02 10 283 0.62 0.79
Tl 4 6.7 2.27 0.17 10 285 1.29 0.23
LM1 4 8.2 0.99 0.46 10 301 2.34 0.01
WM1 4 7.7 1.23 0.37 10 296 1.82 0.06
LM2 4 2.7 5.71 0.1 10 300 0.46 0.91
WM1 4 8.0 0.27 0.89 10 300 2.01 0.03
LM3 4 7.5 0.61 0.67 10 299 1.59 0.11
WM3 4 8.4 0.09 0.98 10 300 2.59 0.01
Fisher method: 72 =2012 %% =40.13
P =021 P =0.0007

rejection for normality, skewness and kurtosis exhibited
by this trait with its general lower level of FA.

Kendall’s tests of concordance have revealed that the
rankings of populations based on FAl were not inde-
pendent among traits (W = 0.22, > = 24.38, d.f. 14,
P = 0.041) but this pattern remained slightly nonsignif-
icant using FA4 (W = 0.21, > = 23.01, d.f. 14, P =
0.060). However, when the TI trait, which exhibited the
lowest level of FA established over the all-individual data
set, was excluded from this analysis, the dependence
among the remaining traits strongly increased using both
FAl (W = 0.27, > = 3035, df. 14, P = 0.007) and
FA4 (W = 0.26, y* = 27.53, df. 14, P = 0.016). The
global significance of the Kendall test of concordance
conducted on the eight original traits allowed us to
consider the resulting sum of ranking per population as a
synthetic rank (Rj) of FA level obtained by each popu-
lation over the eight traits (Table 2). FA was assessed by
two indices, and thus two synthetic rankings were
obtained, respectively, based on FA1 and FA4. The rank
correlation between these two rankings was highly

significant (Gamma test: G = 0.88; P < 0.001). Conse-
quently, only FA1 which presented a higher concordance
between traits was considered in further analyses.

Relationships between genetic diversity
and environmental features

Nevo et al. (1994a), using a stepwise model of multiple
regression analysis, found that, among numerous envi-
ronmental features, the number of rainy days per year
(RD) correlated most closely with the indicators of
genetic diversity. This was established on 12 populations
from Israel. In our study, 14 populations from Israel and
one from Egypt were considered and the relationships
between environmental features and genetic diversity
had to be reassessed. None of the correlation statistics
obtained between all the genetic diversity indicators and
all the environmental features was found to be signifi-
cant (Table 4). Stepwise models of multiple regression
analysis (not reported here) showed that for most of the
genetic diversity indicators (P1%, P5%, H and HE), RD

Table 4 Pearson correlation between environmental and genetic variables.

Environmental variables

Genetic variables ALT J TA ™ TD RN RD HU
Including EGY
A -0.07 0.12 0.06 0.17 -0.15 -0.21 -0.21 -0.15
P1% -0.01 0.12 —-0.01 0.12 -0.24 -0.22 -0.30 -0.16
P5% 0.02 0.17 0.08 0.12 -0.28 -0.29 -0.40 -0.09
H 0.02 0.15 0.02 0.08 -0.26 -0.27 -0.35 -0.34
HE 0.00 0.16 0.08 0.11 -0.27 -0.24 -0.36 -0.19
Excluding EGY
A -0.25 0.42 0.21 0.35 -0.52 -0.41 -0.43 0.05
P1% -0.18 0.43 0.13 0.29 —-0.64* -0.42 -0.53 0.04
P5% —-0.06 0.32 0.10 0.20 -0.49 -0.39 —-0.53 0.00
H -0.14 0.47 0.18 0.24 -0.67** —-0.48 —-0.60* -0.18
HE -0.15 0.46 0.17 0.26 —-0.65* -0.42 -0.59* -0.02

*: P <0.05; **: P<0.0l.
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was the first factor included in the model, but in all these
cases the multiple regression remained nonsignificant.
The addition of the Egyptian population could have been
responsible for the discrepancy between Nevo’s results
(Nevo etal., 1994a) and ours. When the Egyptian
population was excluded from the data set, the
correlation statistics appeared to be significant between
P1%, H and He indicators with RD and TD (Table 4). This
analysis supported the assumption of Nevo et al. (1994a)
that aridity and the genetic diversity were significantly
correlated among Israeli localities. However, the inclu-
sion of the Egyptian locality (EGY), for which the level of
heterozygosity was lower than expected on the basis of
the Israeli pattern, altered the relationships between
aridity and genetic diversity.

Relationships of FA levels with environmental
features

Gamma tests of rank correlation between environmental
variables and Rj (Table 5) indicated that FA was
positively correlated with altitude and seasonal temper-
ature differences (ALT and TD) and negatively with the
mean temperature in January (TJ) (Fig. 2). The discrep-
ancy between the signs of the correlation was expected
since ALT and TD were negatively correlated with TJ
(ALT-TJ: r = —0.90**; TD-TJ: r = —0.74**).

The survey of the relationship between FA levels for
each trait with all the environmental features showed

Developmental stability and adaptive radiation 217

that API is correlated with seven of the eight environ-
mental features considered. Aditionally, Kruskall-Wallis
tests performed on FA traits indicated that the level of FA
displayed by the API trait and Rj were dependent on soil
induration: the harder the soil, the higher the level of FA
(Table 5). Although, the effects of environmental stresses
on FA levels were observed, their origin could not be
ascribed to climatic or soil features.

Rj (FA1)

Seasonal O & 1400
temperature
difference 13 .
(TD (°C)) 12 500 Altitude
0 (ALT (m))

Fig. 2 Plots of synthetic levels of fluctuating asymmetry (Rj) for
populations against altitude (ALT) and seasonal difference of tem-
perature (TD). Closed circles: populations in hard soil; open circles:
populations in light soil.

Table 5 (a) Pearson coefficients of correlation of genetic and environmental variables with FA indices (except for Rj: Gamma rank
correlation); (b) Kruskall-Wallis H statistics for soil effect analyses on FA estimator.

Fluctuating asymmetry estimators

r G
API Tl LM1 WM1 LM2 WM2 LM3 WM3 Rj
(@)
Genetic vairables
A -0.25 0.10 -0.27 -0.23 -0.14 -0.21 0.20 0.13 -0.21
P1% -0.28 0.01 -0.24 -0.22 -0.09 —-0.06 0.12 0.18 -0.09
P5% -0.32 -0.28 0.04 -0.22 -0.11 0.19 0.26 0.24 0.07
H -0.30 -0.24 0.02 -0.16 -0.17 0.26 0.12 0.08 -0.08
HE -0.25 -0.16 0.01 -0.32 -0.14 0.15 0.11 0.15 -0.02
Environmental variables
ALT 0.71* 0.05 0.65* 0.48 0.06 0.46 -0.13 -0.20 0.43*
J -0.77* -0.27 -0.40 -0.50 -0.20 -0.17 0.21 0.10 -0.47
TA —-0.64** -0.11 -0.50 -0.29 -0.22 —-0.31 0.22 0.30 -0.31
™ -0.72** -0.07 —-0.60* -0.33 -0.09 -0.36 0.26 0.41 -0.17
TD 0.62* 0.38 0.08 0.56* 0.08 -0.10 -0.10 0.22 0.39*
RN 0.68** 0.28 0.31 0.08 0.06 0.05 -0.20 -0.43 0.11
RD 0.61* 0.36 0.10 0.13 0.08 -0.13 -0.12 -0.44 0.15
HU 0.06 -0.05 0.17 -0.43 0.06 0.01 0.16 -0.32 0.02
(b)
Soil (1:Hard; 2:light)t 7.34* 0.68 0.12 1.68 2.34 2.00 0.68 0.02 5.03*

* P <0.05; **: P <0.01; ***P < 0.001
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Relationships between FA levels and heterozygosity

Testing the rank correlation between FA estimators and
each of the genetic diversity estimators revealed no
statistical significance considering either each FA trait or
each Rj. Testing the relationships between each of the
eight FA estimators and locus by locus heterozygosity, for
the 25 polymorphic ones, led to 200 correlation coeffi-
cients. Applying one-tailed tests for the expected nega-
tive correlation between FA and heterozygosity led to as
few as seven significant statistics, which could defini-
tively be imputable to type 1 error. These results clearly
supported the lack of statistical relationships between
heterozygosity and FA levels in our case.

Discussion

Developmental stability and environmental features

Adaptive radiation within the chromosomal superspecies
of S. ehrenbergi in Israel has been suggested to involve
speciation in semiarid and arid climates by physiological
adaptation (metabolism, kidney conservation of water)
along with multiple morphological, ecological and be-
havioural adaptive syndromes to increasing aridity
(Yahav et al., 1988, 1989; Nevo, 1991; Ganem & Nevo,
1996). Developmental stability estimated by the synthet-
ic and relative level of FA, Rj, based on all tooth traits and
used as a measure of habitat suitability in the mole rat
populations, was not found to be related to the global
climatic pattern of increasing aridity southwards. While
aridity is considered as the major selective force acting on
populations (and species) of the mole rat southwards, the
lack of a relationship between developmental stability
and aridity suggested that adaptation to this peculiar
environmental trait is fairly achieved with no cost in
terms of developmental stability.

In contrast, developmental stability appeared to be
impaired by one or several covarying climatic features,
i.e. altitude, mean January temperature and seasonal
temperature difference and by soil induration. Although
a global relationship between environment and FA was
revealed among mole rat populations, it remained very
difficult to weight the respective effects of altitude,
temperature and soil on developmental stability, all
these features being potentially stressful.

In a study on body size variation among 44 Israeli
populations of S. ehrenbergi, altitude, rather than aridity,
has been found to be the major determinant of body
weight and length, verifying Bergmann’s rule (Nevo
et al., 1988). The increase of size under cooler environ-
ments is usually considered as a physiological adaptation
limiting the loss of heat (Hoffmann & Parsons, 1991). The
fact that higher altitudes and lower temperatures impair
developmental stability in the mole rat could indicate a
certain maladaption to cooler environments despite
Bergmann’s rule. It may also express the cost in high-

altitude populations of the global adaptation to xericity
for this Near-Eastern subterranean rodent: adaptation to
aridity, mostly related to high temperatures in this
region, might be physiologically costly in cooler envi-
ronments.

Besides, the soil induration could also be considered
as having a potential effect on developmental stability.
Flynn et al. (1987) have shown that the thickness of
incisor enamel, which differed among S. ehrenbergi
chromosomal species, increased with soil induration,
indicating that thickness could be advantageous for
digging. Additionally, molar morphology has been
shown to differ between populations according to soil
type (Butler ef al., 1993). If these dental traits are
adaptive, soil induration may be considered as an
efficient selective pressure able to induce environmental
stresses.

We have noted that the morphological trait most
correlated with environmental features is the anterio-
posterior width of the incisor (API). Incisors in rodent are
hypsodont, which means that they grew during the
whole life of the animal. This contrasts with molars
which, as in the house mouse (Bader, 1965), developed
to their definitive size early in life. Further analyses
would be required to assess the variability of asymmetry
along the incisor, and its relationship with environmen-
tal changes during the life of the animal. This trait may
provide an interesting marker more related to the
environmental stresses undergone by animals during
their life-time. Additionally, this may also provide some
insight into the mechanisms which generate asymmetries
(see for review Moller, 1996).

We should, however, point out that the cline of aridity
is matched with several other biotic or abiotic clines,
among which is the heterozygosity displayed by popula-
tions. An alternative hypothesis would be that aridity
remains a stressful factor on S. ehrenbergi populations, but
the related impairing effect on the stability of develop-
ment, which is expected to increase southwards, could be
complemented by increasing heterozygosity.

Developmental stability, genetic features
and speciation events

The role of heterozygosity on FA has been the focus of
extensive studies, and a negative relationship between
these two features has been reported (Mitton & Grant,
1984; Clarke, 1993; Markow, 1995). Nevertheless, stud-
ies failing to show this relationship are not rare (Wooten
& Smith, 1986; Patterson & Patton, 1990; Clarke, 1993;
Yampolosky & Scheiner, 1994). The strongest evidence
for such a dependence was certainly provided by intra-
population studies showing that the most homozygous
individuals for several allozymic loci displayed the higher
levels of FA (Leary et al., 1983, 1984, 1992; Biémont,
1983). Mitton (1993) stressed that the association
between heterozygosity and developmental homeostasis
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may be attributable to a limited number of genes rather
than to the entire genome and that the assessment of
heterozygosity based on several allozymic markers may
obscure the association between heterozygosity at a
specific locus and developmental stability. In S. ehren-
bergi, genetic indices have been established on subsam-
ples (Nevo et al., 1994a) of those used for the present FA
approach and were presumed to be reliable population
indicators of the genetic diversity. Yet, the developmental
stability in the mole rat was associated neither with the
overall heterozygosity based on the 36 allozyme loci nor
with the heterozygosity at each of the 25 polymorphic
ones.

If we postulate that the constant level of developmen-
tal stability along with the sharp gradient of aridity
supports the idea of an efficiency of adaptive strategies of
populations to their local conditions of aridity, an
increasing heterozygosity would then be expected to
increase the level of developmental stability southwards
despite the higher aridity stress. This absence of a
detectable influence of heterozygosity on developmental
stability in S. ehrenbergi populations may be then di-
versely explained. First, there may be no visible effect of
heterozygosity on developmental stability as already
reported in various studies (see references above). Sec-
ond, the beneficial effect of heterozygosity on develop-
ment could be counterbalanced by another effect
impairing developmental stability. The southward in-
crease in heterozygosity is accompanied by a number of
environmental and genetic changes. For instance, a
parasitological approach has shown that the number
and co-occurence of coccidian species found in
S. ehrenbergi increased in southern species (2n = 58
and 60) (Couch et al., 1993). Even though it may not be
generalized (Alibert ef al., 1994), parasites have been
shown to decrease developmental stability (Moller, 1992;
Parsons, 1992; Polak, 1993; Markow, 1995) and could be
a relevant applicant to balance the benefit of heterozy-
gosity on developmental stability. By contrast, if we
postulate that aridity remains a stressful factor south-
wards, the alternative hypothesis for the lack of a
relationship between FA with aridity and heterozygosity
would simply express the complementing effects of these
two features on developmental stability.

The developmental stability is believed to depend on
both genomic coadaptation and heterozygosity (Clarke,
1993). It is thought that in a typical diploid organism,
coadaptation refers to a relational balance between
homologous chromosomes and an internal balance
among genes within and among chromosomes (Mather,
1973 in Clarke et al.,, 1992). Chromosomal differences
between mole rat species combine whole-arm Robert-
sonian changes (fusions but mainly fissions), pericentric
inversions (Wahrman et al.,, 1985) and a considerable
amount of chromosomal microchanges (Nevo, 1988).
Nevo (1991) suggested that, on the basis of available
molecular and organismal data, there was no evidence of
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a genetic revolution or of a major gene reorganization at
each step of the radiation. However, each successively
emerging species exhibited a new chromosomal organi-
zation of the genome through an increase in chromo-
somal number, which could modify both the pattern and
the rate of recombination. Nevo ef al. (1996) reported an
increasing rate of recombination from 2n = 52 species to
2n = 60. Increased recombination rates may disrupt
ancestral coadaptive gene complexes resulting in a
‘recombinational load” (Charlesworth & Barton, 1996).
Such an increase in recombination rate has been report-
ed between the 2n = 52-54 and the 2n = 58-60 (Nevo
et al., 1996). It could be then hypothezised that, in the
S. ehrenbergi superspecies, the gradient in heterozygosity
from ancestral to derived parallels that of an increase in
recombination rates; their opposite effects would com-
pensate along the gradients and maintain an equivalent
level of developmental stability among the chromosomal
species.

Obviously, further studies are required to examine this
hypothesis. It implies that within each chromosomal
species of the mole rat, a relationship between hetero-
zygosity and developmental stability is expected. How-
ever, since trans-specific effects of environmental
stresses, e.g. altitude, have been demonstrated in the
present study, this approach has to be conducted at the
intrapopulation level by grouping individuals according
to their level of heterozygosity and thus implies that our
sample sizes need to be considerably enlarged.

Conclusions

In order to analyse and interpret the level of develop-
mental stability in natural populations, Clarke (1993)
stressed the need to know the exact genetic structure
and the evolutionary history of groups under examina-
tion. However, the more that is known, the higher is
the number of potentially inextricable factors acting on
developmental stability. Several authors, including Par-
sons (1988), Hoffman & Parsons (1991) and Clarke
(1993), emphasized the complex relationships that exist
between environmental and genetic stresses as well as
their potentially cumulative effects on developmental
stability. The assessment of natural habitat suitability
using developmental stability among mole rat popula-
tions would lead us to conclude that lower altitude,
lighter soil or hotter environments should not be
considered as stresstul, despite the fact that they can
be drastically more arid. Aridity would then not appear
as a stressful factor, even though it has been considered
as the major selective pressure during the adaptive
radiation of this superspecies towards xeric environ-
ments. Instead, the inclusion of potential genetic
stresses in addition to environmental ones in this study
of the developmental stability of natural populations
of S. ehrenbergi clearly underlines the likelihood of
complex complementary effects which hampers the
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interpretation of habitat suitability in terms of adaptive
strategies. Although hypotheses on such complementa-
ry effects may emerge from studies of natural popula-
tions, testing them definitely requires experimental
analyses.
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