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ABSTRACT

This study evaluated the virulence potential of Escherichia coli isolates producing CTX-M B-lactamases.
During a 24-month period, 33 extended-spectrum B-lactamase (ESBL)-producing E. coli, including 14
CTX-M-producers, were isolated from urinary tract infections at Nimes University Hospital, France. The
prevalence of 14 major virulence factors (VFs) was investigated by PCR and compared with the
prevalence in a group of 99 susceptible E. coli isolates. Ten VFs were less prevalent (p <0.05) in the ESBL
isolates than the susceptible E. coli, while iutA and traT were more prevalent in ESBL isolates (p <0.05).
Moreover, the CTX-M-producing isolates had significantly fewer VFs than TEM-producing isolates. A
novel infection model using the nematode Caenorhabditis elegans was developed to assess the virulence
properties of extra-intestinal pathogenic E. coli (ExPEC) strains in vivo. C. elegans infection assays, using
14 ESBL-producing E. coli and ten susceptible E. coli isolates, indicated that the ability to kill nematodes
correlated with the presence of VFs, and that CTX-M-producing isolates had relatively low virulence
in vivo. Overall, the results suggested that hospital-acquired CTX-M-producing E. coli, although adapted
for survival in an antibiotic-rich environment such as the hospital milieu, have a relatively low intrinsic
virulence potential.
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second half of the 1980s in E. coli and Salmon-

INTRODUCTION
ODUCTIO ella, the incidence of CTX-M-producing bacteria

The increase in the frequency of extended-
spectrum B-lactamase (ESBL)-producing Escheri-
chia coli strains causing nosocomial infection is a
major problem, exacerbated by the fact that
ESBLs are generally encoded by plasmids that
can be transmitted easily to other strains. The
CTX-M group of ESBLs hydrolyse broad-spec-
trum cephalosporins, with higher levels of
hydrolytic activity against cefotaxime than
against ceftazidime, and are susceptible to sui-
cide inhibitors [1]. Initially described during the
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has increased dramatically since 1995, with
spread of CTX-M genes to other enterobacteria
being reported in most parts of the world [1].
CTX-M genes are now widespread in E. coli
strains, which are the major cause of urinary
tract infection (UTI), leading to serious problems
in the management of these common infections
[2,3]. This problem is exacerbated by the fre-
quent association between CTX-M production
and quinolone resistance.

As CTX-M-producing strains pose a significant
therapeutic challenge, it is important to determine
their intrinsic virulence potential. The main
recognised virulence or fitness factors of extra-
intestinal pathogenic E. coli (EXPEC) include
adhesins, capsules, toxins and iron-acquisition
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systems, which are mainly encoded by chromo-
somal pathogenicity islands (PAls) or by large
plasmids [4-7]. Interestingly, several studies have
suggested a correlation between resistance to
quinolones or fluoroquinolones and a low level
of virulence factors (VFs) [8-14]. In addition, two
studies have shown an association between CTX-
M-type ESBLs and fluoroquinolone resistance and
a lack of VFs, based on the analysis of a small
number of VFs [8,15], although another study has
reported that CTX-M-producing strains from a
community outbreak did not possess lower levels
of VFs [16]. In all these studies, the relationship
between resistance and virulence has been based
on the presence/absence of VFs, and no animal
studies have been conducted to monitor virulence
in vivo.

The virulence of ExPEc in vivo is usually
assessed using a model of ascending UTI in mice
that is both technically and ethically unsuitable to
evaluate the virulence of a large number of
clinical isolates. A correlation between the viru-
lence of E. coli in mice and the number of VFs has
been demonstrated, based on the ability to kill
mice [17]. The nematode Caenorhabditis elegans has
been validated for use as a possible alternative
model for studying the virulence properties of
various pathogenic bacteria [18]. However, to
date, this model has not been used to compare the
lethality induced by different uropathogenic
E. coli strains. The present study examined a
collection of ESBL-producing uropathogenic
E. coli isolates from a French University Hospital
for the presence of genes encoding VFs and for
virulence in the nematode model of infection.

MATERIALS AND METHODS
Data collection and bacterial strains

A surveillance programme for ESBL-producing E. coli isolates
from UTI was introduced at the Nimes University Hospital,
Nimes, France, between 1 April 2002 and 31 March 2004.
Positive urine cultures were defined by leukocyturia of
>10*/mL and a bacterial concentration of >10° CFU/mL [2].
The genus and species were determined biochemically using
the Vitek 2 GNS-F7 identification card (bioMérieux, Marcy-
I'Etoile, France). For each ESBL-producing E. coli isolate
identified during the study, three susceptible (i.e., to all
antimicrobial agents tested) E. coli isolates from UTI were also
selected. Information concerning the patients’ age, gender,
hospital admission, immunocompetence and McCabe scores,
as well as the date of isolation of the bacteria, was collected.
Patients were deemed to have community-acquired disease if
the first culture positive for ESBL-producing E. coli was

obtained within 48 h of admission. Duplicate isolates from
the same patient were excluded, and only the first positive
isolate from each urine specimen per patient was retained.

Characterisation of B-lactamase-encoding and gnr genes

Isoelectric focusing was performed using polyacrylamide gels
as described previously [19]. The blargwm, blagpy and blacrxm
genes were detected by PCR using specific primers [19-22],
followed by sequencing of the PCR products. All quinolone-
resistant isolates were screened by PCR for the gnrA gene [23].

Susceptibility testing

Antibiotic susceptibility testing was performed using the Vitek
2 AST-NO017 card (bioMérieux) and by disk-diffusion on
Muller-Hinton agar with antibiotic disks (Pasteur Diagnostics,
Marne-la-Coquette, France). Production of ESBLs was tested
using the double-disk synergy test [24]. Isolates were studied
in more detail whenever the synergy test for ESBL-production
was positive. The isolates were classified as sensitive, inter-
mediately-resistant, or resistant to the other antibiotics tested,
according to the recommendations of the Antibiotic Suscepti-
bility Testing Committee of the French Society for Microbio-
logy (http://www.sfm.asso.fr). The susceptible E. coli strains
used as controls were selected on the basis of their suscepti-
bility to all 22 antibiotics tested.

Pulsed-field gel electrophoresis (PFGE) analysis

Macrorestriction analysis of Xbal-digested chromosomal DNA
was performed by PFGE with the CHEF DRII system (Bio-Rad,
Ivry-sur-Seine, France) [25]. Electrophoresis was at 6 V/cm at
12°C for 30 h, with pulse times ranging from 40 s to 5 s, and
180 V. The PFGE patterns were analysed with Gel Compar
v.3.5 (Applied Maths, Sint-Martens-Latem, Belgium) and
compared by the unweighted-pair group method using arith-
metic averages (UrGMa) with the Dice similarity coefficient.
Isolates were considered to belong to a cluster if the similarity
coefficient was >80%.

Phylogenetic grouping

Phylogenetic grouping of the E. coli isolates was determined
with a PCR-based method developed by Clermont et al. [26] using
a combination of three DNA markers (chuA, yjaA, TspE4.C2).

Virulence genotyping

The E. coli isolates were tested by PCR for the presence of a
panel of genes encoding known VFs. PCR amplification of the
papG alleles (encoding P fimbriae) was as described by Johnson
[27]. Methods used to amplify sfaS, focG (S fimbriae and F1C
fimbriae), afa/draBC (Dr family adhesin), fimH (mannose-
specific adhesin subunit of type 1 fimbriae), hlyA (haemolysin),
cnfl  (cytotoxic necrotising factor-1), iutA (aerobactin),
kpsMTK1 and kpsMTII (capsule synthesis), and traT (serum
resistance) were as described by Johnson et al. [12]. Primers to
amplify iroN (iron acquisition), malX (a marker for a PAI from
archetypal uropathogenic strain CFT073) and irp2 (yersinia-
bactin) were as described previously [28-30]. Southern blotting
with a digoxigenin-dUTP-labelled fimH probe was used to
confirm the low prevalence of fimH among CTX-M isolates.
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Nematode killing assay

The C. elegans infection assay was performed as described by
Kurz et al. [31], except that the Ferl5 mutant line, which has a
temperature-sensitive fertility defect, was used rather than
wild-type N2 worms. The nematodes and E. coli strain OP50
(an avirulent control strain) were provided by J. Ewbank
(CIML, Marseille, France). To synchronise the growth of
nematodes, eggs were collected using the hypochlorite method
[31]. NGM agar plates [31] were inoculated with a drop of an
overnight E. coli culture and incubated at 37°C for 8-10 h. The
plates were allowed to cool to room temperature and were
seeded with L4 stage nematodes (20-30 nematodes/plate). The
plates were then incubated at 25°C and scored each day for
live nematodes under a MS5 stereomicroscope (Leica, Wetzlar,
Germany). At least three replica experiments, repeated three
times, were performed for each selected clone. A nematode
was considered dead when it no longer responded to touch.
Worms that died as a result of becoming stuck to the wall of
the plate were excluded from the analysis.

Statistical analysis

For each VF, comparisons between the CTX-M and TEM-ESBL
groups, between the CTX-M and susceptible groups, and
between the resistant (TEM and CTX-M) and susceptible
groups were evaluated using Fisher’s exact test (SAS/ETS
software release v.8.1; SAS Institute Inc, Cary, NC, USA), with
p <0.05 considered to be statistically significant. To compare
the entire survival curves in nematode killing assays, a Cox
regression model was calculated using SPSS v.6.1.1 (SPSS Inc.,
Chicago, IL, USA).

RESULTS
Epidemiological background

During the 24-month period of the study, 33
ESBL-producing E. coli isolates were obtained
from urine. All isolates were of nosocomial origin.
The median age of the patients (66.7% female)
was 76 years; 90.9% of the patients were immu-
nocompromised, and all had at least one under-
lying co-morbid illness. The calculated vital
prognostic was a McCabe score 21 in 57.1% of
patients infected by CTX-M-producing E. coli and
in 47.4% of patients infected by TEM-producing
E. coli. The resistant bacteria were isolated from
patients in the following units: medicine (36.3%),
geriatrics (21.2%), recovery (15.2%), surgical
(15.2%) and intensive care (12.1%).

A control group of 99 antibiotic-susceptible E.
coli isolates from UTI patients was also included;
48.5% of these isolates were of nosocomial origin.
The isolates were obtained from 99 patients
(88.9% female, median age 54 years) in different
medical units during the study period. The
patients were mostly (94.9%) immunocompetent;

10.1% of the patients had at least one underlying
co-morbid illness, and only 2.0% had a McCabe
score 21.

Antibiotic resistance and phylogenetic
characterisation of E. coli isolates

PCR analysis showed that the ESBL isolates
produced either CTX-M or TEM B-lactamases
(Table 1). The CTX-M group (42.5% of the iso-
lates) included E. coli producing CTX-M-15
(27.3%), CTX-M-14 (6.1%), CTX-M-3 (6.1%) and
CTX-M-1 (3.0%). The TEM-group (57.5% of the
isolates) included E. coli producing TEM-24
(48.5%), TEM-3 (3.0%), TEM-19 (3.0%) and
TEM-129 (3.0%). Of the CTX-M-type ESBLs,
21.4% were associated with both OXA-1 and
TEM-1, 50% with TEM-1 only, and 21.4% with
OXA-1 only.

The antibiotypes of the ESBL-producing E. coli
are shown in Table 1. A large proportion of
isolates were resistant to the aminoglycosides,
notably to amikacin (45.5%), and to co-trimoxaz-
ole (60.6%). Gentamicin remained active against
72.7% of isolates, while imipenem was active
against 100% of isolates. Production of TEM and
CTX-M ESBLs was associated frequently with
quinolone resistance; of 33 ESBL-positive isolates,
25 (75.7%) were resistant to nalidixic acid, of
which 23 were also resistant to fluoroquinolones.
The association with quinolone resistance was
particularly high among the isolates producing
CTX-M ESBLs (92.8%). The gnrA gene was detect-
ed in 12.1% of the ESBL-producing E. coli isolates
belonging to the CTX-M group.

Analysis of the ESBL-producing isolates by
PFGE showed that neither the CTX-M nor TEM
groups, nor the susceptible isolates, had a clonal
origin (data not shown). Phylogenetic grouping
revealed that the CTX-M isolates belonged pre-
dominantly to phylogenetic group D (50%), while
group B2 predominated (47.4%) among the TEM
isolates (Table 1). The sensitive isolates belonged
predominantly to group B2 (73.7%), and only
11.1% belonged to group D.

Analysis of virulence genotypes

Table 2 shows the distribution of genes encoding
VFs, while Table 3 summarises the number of VFs
found in the different groups of isolates. One
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Table 1. Characteristics of extended-spectrum p-lactamase (ESBL)-producing Enterobacteriaceae isolated from urinary
tract infections in a French university hospital, 2002-2004

Isolate Unit or ward Phylogenetic group qnrA p-lactamase content Antibiotype
CTX-M group
NEC 3 Medicine A - CTX-M-15/0XA-1/TEM-1 KTGNtA - NAL,OFX,NOR,CIP,PEF - TET
NEC 11 Medicine D + CTX-M-15/0XA-1/TEM-1 KTNtA - NAL,OFX,NOR,CIP,PEF - TET, CHL
NEC 21 Recovery unit B2 - CTX-M-15/0XA-1/TEM-1 KTNtA - NAL,OFX,NOR,CIP,PEF - TET, CHL
NEC 5 Medicine D + CTX-M-15/0XA-1 TGNt - NAL,OFX,NOR,CIP,PEF - TET
NEC 8 Medicine D + CTX-M-15/0XA-1 TGNt - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 18 ICU B2 - CTX-M-15/0XA-1 TGNt - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 6 ICU D + CTX-M-15/TEM-1 KTNtA - NAL,OFX,NOR,CIP,PEF — TET
NEC 24 Medicine B2 - CTX-M-15/TEM-1 TGNt - NAL,OFX,NOR,CIP,PEF - TET
NEC 26 ICU B2 - CTX-M-15 KTGNtA - NAL,OFX,CIP,NOR,PEF
NEC 9 Surgery D - CTX-M-14/TEM-1 KTNtA - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 10 Geriatric D - CTX-M-14/TEM-1 NALNOR - SXT, TET, CHL
NEC 7 Surgery A - CTX-M-3/TEM-1 KTGNtA — NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 30° Geriatric A - CTX-M-3/TEM-1 SXT, TET, CHL
NEC 22 Medicine D - CTX-M-1/TEM-1 TGNt - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
TEM group
NEC 17 Recovery unit B2 - TEM-24, TEM-1/0XA-1 NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 1 Geriatric A - TEM-24, TEM-1 KTNtA - SXT, TET, CHL
NEC 15 Surgery A - TEM-24, TEM-1 KNtA - SXT, TET, CHL
NEC 25 ICu A - TEM-24, TEM-1 NAL,OFX,NOR,CIP,PEF - TET, CHL
NEC 27 Recovery unit B2 - TEM-24, TEM-1 TGNt - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 31 Recovery unit D - TEM-24, TEM-1 KTNtA - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 20 Geriatric B2 - TEM-24, OXA-1 TNt - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 2 Geriatric B2 - TEM-24 T - SXT, TET, CHL
NEC 4 Medicine B2 - TEM-24 KTNtA - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 12 Geriatric Bl - TEM-24 KTNtA - NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 16 Recovery unit D - TEM-24 KTNtA - SXT, TET, CHL
NEC 19 Surgery A - TEM-24 KTNtA - NAL,OFX,NOR CIP,PEF - SXT, TET, CHL
NEC 28 Medicine B2 - TEM-24 NAL,OFX,NOR,CIP,PEF — SXT, TET, CHL
NEC 29 Medicine A - TEM-24 KTNtA - TET, CHL
NEC 32 Medicine A - TEM-24 NAL,OFX,NOR,CIP,PEF - SXT, TET, CHL
NEC 33 Medicine B2 - TEM-24 TET, CHL
NEC 13 Surgery Bl - TEM-3 KTNtA - NAL - TET, CHL
NEC 23 Geriatric B2 - TEM-19 NAL - SXT, TET, CHL
NEC 14 Medicine B2 - TEM-129 TET

“Correspond to isolates susceptible to quinolones and/or fluoroquinolones.
ICU, intensive care unit; K, kanamycin; T, tobramycin; G, gentamicin; Nt, netilmicin; A, amikacin; NAL, nalidixic acid; OFX, ofloxacin; NOR, norfloxacin; CIP, ciprofloxacin;
PEF, pefloxacin; SXT, trimethoprim-sulphamethoxazole; TET, tetracycline; CHL, chloramphenicol.

Table 2. Virulence factors associated with resistant and susceptible Escherichia coli isolates causing pyelonephritis and
cystitis

Resistant UTI isolates p*
Virulence factors CTX-M n (%) TEM n (%) Total R n (%) Susceptible UTI isolates n (%) CTX vs. TEM CTX vs. S Rvs. S
Number of isolates 14 19 33 99
Adhesins papG
Class I 0 (0 0 (0) 0 (0) 0 (0)
Class II 2 (14.3) 4(21.1) 6 (18.1) 48 (48.5) 0.03 <0.0001
Class IIT 5(35.7) 13 (69) 18 (54.6) 34 (34.3) 0.029 0.004
Class II+III 0 (0) 1(5.3) 10) 12 (12.1)
None 7 (50) 16.3) 8(24.2) 25 (25.3) 0.019
sfaS 0 (0) 2 (10.5) 2 (6.1) 19 (19.2)
focG 0 (0 1(5.3) 1(3.0) 26 (26.3) 0.006 <0.0001
afa/draBC 0 (0) 3 (15.8) 39.1) 14 (14.1)
fimH 3(21.4) 13 (68.4) 16 (48.5) 91 (91.9) 0.013 <0.0001 <0.0001
Toxins hlyA 1(7.1) 15.3) 2 (6.1) 46 (46.5) 0.011 <0.0001
haemolysin 1(7.1) 1(5.3) 2(6.1) 46 (46.5) 0.011 <0.0001
cnfl 0 (0) 15.3) 10) 49 (49.5) 0.001 <0.0001
Siderophores iutA 9 (64.3) 11 (58) 20 (60.6) 36 (36.4) 0.07 0.042
irp2 6 (42.9) 5(26.3) 11 (33.3) 77 (77.8) 0.03 <0.0001
iroN 2(14.3) 11 (58) 13 (39.4) 64 (64.6) 0.015 0.002 0.042
Capsules kpsMTIT 1(7.1) 5(26.3) 6 (18.2) 75 (75.8) <0.0001 <0.0001
kpsMTK1 171D 4 (21.1) 5(15.2) 48 (48.5) 0.011 0.002
Miscellaneous traT 7 (50) 15 (79) 22 (66.7) 34 (34.3) 0.007
malX 5(35.7) 9 (47.4) 14 (42.4) 69 (69.7) 0.042 0.039

? p values (Fisher’s exact test) are shown where p <0.05.
R, total resistant isolates; S, total susceptible isolates.

trend was clearly visible, namely, a striking ible isolates, with susceptible isolates possessing
difference in both the number and distribution = more VFs than the ESBL isolates (p <0.05). ESBL-
of VFs between the ESBL-producing and suscept-  producing isolates had fewer urovirulence factors
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Table 3. Aggregated virulence factors associated with resistant and susceptible Escherichia coli isolates

Resistant UTI isolates p°
Virulence factors® CTX-M (%) TEM (%) Total R (%) Susceptible UTI isolates CTX vs. TEM CTX vs. S Rvs. S
Number of isolates 14 19 33 99
<5 factors 13 (87.5) 9 (474 22 (66.7) 27 (27.3) 0.001 0.001 <0.001
6-9 factors 1(12.5) 10 (52.6) 11 (33.3) 53 (53.5) 0.001 0.001 NS
10-14 factors 0(0) 00 0(0) 19 (19.2) NS 0.019 0.019

*Fourteen virulence factors (sfaS, focG, afa/draBC, fimH, type I adhesin, hlyA, cnfl, iutA, iroN, traT, malX, irp2, kpsMTII, kpsMTK1) were determined by PCR in each group.

*p values (Fisher’s exact test) are shown where p <0.05.
R, resistant isolates; S, susceptible isolates; NS, not significant.

(hlyA, cnfl, sfa/foc, kps), but two VFs (traT and
iutA), classically carried by plasmids, were
numerically more prevalent among the ESBL
isolates (p <0.05). Interestingly, a comparison of
the CTX-M-producing isolates with the other
ESBL-producing isolates revealed that the CTX-
M-producing isolates carried an even smaller
quota of VFs. The CTX-M isolates appeared to
lack genes encoding adhesins; 50% of these
isolates did not possess a detectable papG allele,
and fimH was present in only 21.4% of isolates,
whereas this gene was present in 91.9% of
susceptible isolates and in 68.4% of TEM isolates.
The low prevalence of fimH among CTX-M
isolates was confirmed by Southern blotting (data
not shown).
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C. elegans killing model

A panel of isolates, including 14 ESBL-producing
E. coli (seven CTX-M-15, six TEM-24, one TEM-3)
and ten susceptible E. coli, was tested in the C.
elegans infection assay. These groups of isolates
produced 1-4, 5-8, 6 and 10-15 VFs, respectively.
All clinical isolates showed virulence in the C.
elegans model; however, the susceptible isolates
were more virulent than the resistant isolates. The
mean survival time for nematodes fed on clinical
isolates was 3.01 (+ 0.13) days for susceptible
isolates, 4.66 (+ 0.36) days for TEM-producing
isolates, and 6.28 (+ 1.24) days for CTX-M-produ-
cing isolates (Fig. 1). The mean survival times for
nematodes fed with the avirulent OP50 control

—X—O0P50
——0—NEC5-CTX-M-15
---0--- NEC18-CTX-M-15
— -~ —NEC6-CTX-M-15
---0--- NEC3-CTX-M-15
—a—NEC12-TEM-24
---A--- NEC17-TEM-24
—-A—- NEC4-TEM-24

— —& —NEC13-TEM-3

— -8 —NECS21963
---0--- NECS29784
—8—NECS19923
—O0— NECS29796

Hd—r—d—O—X~

10 11 12 13 14 15 16 17

Time of exposure (days)

Fig. 1. Kinetics of killing of Caenorhabditis elegans infected by CTX-M-producing Escherichia coli (circles), TEM-producing E.
coli (triangles), and susceptible E. coli (squares). For each group of isolates (CTX-M, TEM and susceptible), four isolates
representative of the results are shown. The line with crosses shows the survival curve for C. elegans fed with the non-
pathogenic E. coli OP50 strain. In all cases, C. elegans was grown on NGM agar plates [31] at 25°C, with 20-30 N2
hermaphrodites used in each test. The curves are representative of at least three independent trials for each group of
isolates.
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strain was 10.33 (+ 0.98) days. All the nematodes
infected with susceptible E. coli isolates were
killed within 8 days (7.5 + 0.5 days). This time
was shorter than that for nematodes infected with
E. coli producing TEM (10.25 + 0.7 days) or CTX-
M-15 (12.5 + 0.8 days) enzymes. The experiment
was repeated three times with similar results. Cox
regression analysis revealed that an infection with
a susceptible E. coli isolate reduced the survival of
nematodes by a factor of 4.29 (OR (Wald statistic)
64.82, d.f. =1, p <0.00001) compared with nema-
todes infected with CTX-M-producing E. coli
isolates. This result was highly reproducible, with
no significant difference among three repeated
experiments (Wald statistic 0.56, d.f. 3, p 0.91).
Thus, there was a clear correlation between the
ability to kill C. elegans and the number of VFs
present in the genome of each E. coli isolate.

DISCUSSION

CTX-M-producing bacteria have now been isolat-
ed worldwide, both in hospitals and in the
community [1,32-37]. CTX-M-producing isolates
now represent up to 50% of ESBL-producing E.
coli isolates from French hospitals [1,15,19]. In
particular, the number of CTX-M-15 producers
has increased dramatically [33,38—43]. The aim of
the present study was to determine the virulence
potential of hospital-acquired CTX-M-producing
E. coli isolates, which are often associated with
other antibiotic resistances, in order to assess the
risk they present in the hospital and the commu-
nity.

The present study clearly revealed that ESBL-
producing E. coli isolates from UTI lack extra-
intestinal VFs, and that this phenomenon was more
marked among CTX-M-producing isolates com-
pared with TEM-producing isolates. Notably ab-
sent from CTX-M-producing isolates were classical
extra-intestinal VFs, such as haemolysin produc-
tion and fimbriae. The two exceptions were iutA
and fraT, both of which are usually plasmid-
encoded. These results corroborate and extend
recent studies on ESBL-producing isolates in which
the presence of a more limited panel of VFs was
investigated [8,15]. CTX-M isolates are generally
also fluoroquinolone-resistant, and there appears
to be a link between phylogeny and virulence, as
the CTX-M isolates belonged mostly to non-B2
phylogenetic groups (predominantly the D group),
while the sensitive and TEM isolates belonged

predominantly to the B2 group. Previous studies
have reported that fluoroquinolone-resistant iso-
lates, with low levels of VFs, occur predominantly
in non-B2 phylogenic backgrounds, while suscept-
ible isolates were predominantly from group B2
[13,17,29,30,44]. Nevertheless, members of the B2
group were significantly represented among the
CTX-M-15-producing isolates in the present study,
which is consistent with other recent reports
[15,16]. However, one study failed to observe a
lower prevalence of VFs, which might be linked to
the fact that the majority of isolates were obtained
from outbreaks [16].

The low levels of VFs seen in the CTX-M-
producing isolates could be linked to the loss of
unstable PAls carrying VFs from a previously
virulent strain following the acquisition of ESBL
resistance. Alternatively, the CTX-M-producing
isolates could be derived from strains with low
pathogenicity that have acquired a CTX-M-enco-
ding plasmid. Such an event might be favoured
by a specific genetic background, as these isolates
are predominantly from the phylogenetic group
D background, whereas ExPEC generally belong
to the B2 group. Another plasmid-associated
gene, iutA, encoding the aerobactin system, was
often observed among CTX-M-producing isolates.
Interestingly, the gene responsible for plasmid-
mediated quinolone resistance, gnrA [45], was
detected in some CTX-M isolates, but not in other
isolates. Overall, these results suggest that CTX-M
isolates might be derived from strains that are
highly receptive to plasmid acquisition.

There is a growing interest in using the inver-
tebrate C. elegans as a model host system for
investigating virulence mechanisms and defence
responses against human pathogens [18], and the
C. elegans model has been used to study EPEC
virulence [46]. The present study demonstrated,
for the first time, that the ability to kill nematodes
can be used to evaluate ExPEC virulence. The
ability of ExPEC strains to kill nematodes was
found to correlate with the presence of VFs, as
antibiotic-susceptible isolates killed nematodes
faster than the TEM- or CTX-M-producing iso-
lates. The epidemiological features of the patients,
the molecular virulence profiles and the in-vivo
behaviour all suggested that the CTX-M group
genotype, although adapted for survival in an
antibiotic-rich environment, such as the hospital
milieu or the microflora of hosts exposed to
antibiotics, has a limited intrinsic virulence
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potential. However, the CTX-M-producing iso-
lates remained more virulent than the avirulent
E. coli OP50 control strain, indicating that CTX-M-
producing isolates retain an intrinsic virulence
potential, despite the absence of major VFs such
as fimbriae. These results suggest that nosocomial
CTX-M-producing isolates may be opportunistic
pathogens of low virulence whose ability to cause
disease is limited to compromised hosts, as was
the case in the present study. Community out-
breaks of CTX-M-producing bacteria are likely to
be caused by strains that have a higher virulence
potential [16].
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