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Annexe A1

Coupling landscape graph modeling and
biological data : a review

Abstract
Context
Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly
suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners.
However, it may be problematic to use these methods in operational contexts without validating them with empirical data on
species or communities.
Objectives
Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an
exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are
constructed and used, the type of field data, and the way these data are integrated into the analysis.
Methods
We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on
methodological choices and contexts of the studies.
Results
Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the
objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps
and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an
operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of
connectivity.
Conclusions
Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying
scales. The great variability of approaches adopted reveals the flexible nature of these tools.

Cet article a été publié dans Landscape Ecology en mars 2020 :

Foltête, J. C., Savary, P., Clauzel, C., Bourgeois, M., Girardet, X., Sahraoui, Y., Vuidel, G. & Garnier, S. 2020. Coupling

landscape graph modeling and biological data : a review. Landscape Ecology, 35(5), 1035-1052
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1 Introduction

Landscape connectivity modeling is a powerful tool for analyzing the movements of species living
in fragmented habitats (Correa Ayram et al., 2016 ; Zeller et al., 2018). Connectivity models integrate
information about species behavior and landscape structures (Cushman et al., 2013a). However, de-
signing realistic models of the ecological processes involved while providing tools likely to be used by
landscape managers remains a major issue (Beier et al., 2008). Even if data acquisition is difficult and
local records of species are scarce (Pressey, 2004 ; Pe’er et al., 2005), it is essential to integrate field
data in landscape connectivity modeling (Crooks et Sanjayan, 2006 ; Kadoya, 2009).

Graph-theoretic approaches are considered both promising (Calabrese et Fagan, 2004 ; Minor et
Urban, 2008 ; Kadoya, 2009 ; Urban et al., 2009) and of uncertain ecological relevance (Moilanen,
2011) in landscape connectivity modeling. Among the spatial graphs used in ecology and conserva-
tion (Dale et Fortin, 2010 ; Fall et al., 2007), landscape graphs (also named habitat networks) have
emerged in the last 15 years, following the seminal paper of Urban et Keitt (2001). They are mainly
used to model networks of discrete habitat patches in many geographical contexts and for numerous
species. In these graphs, nodes usually represent habitat patches of the species under study while
links represent potential movements (Galpern et al., 2011 ; Urban et al., 2009). As initially designed,
landscape graphs are constructed from a landscape map defined in accordance with species’ habi-
tat requirements and movement abilities. They are an interesting compromise among other modeling
approaches given the little input data needed and their capacity to represent ecological fluxes (Ca-
labrese et Fagan, 2004). This makes them particularly suitable for supporting conservation decisions
taken by land planners (Foltête et al., 2014 ; Zetterberg et al., 2010). However, it has been recognized
that combining them with empirical data about species would improve their current implementation
(Kadoya, 2009). Indeed, when landscape graphs are constructed from land cover maps without field
data on species, their ability to represent ecological networks relies entirely on the assumption that
the land-cover types identified as potential habitats or corridors are actually suitable for a species to
settle in or disperse through. Since this assumption is not always confirmed (Clevenger et al., 2002 ;
Shirk et al., 2010 ; Wasserman et al., 2010), it may be problematic to use these methods to support
decisions in operational contexts without considering empirical data on species (Cushman et al., 2013a
; Beier et al., 2008). This issue is even more acute when the outcomes of connectivity modeling lead to
significant funds being committed to concrete operations of conservation, compensation, or restoration.

While many studies using landscape graphs are based on land-cover maps alone (e.g. Avon et
Bergès (2016) ; Dondina et al. (2018) ; Martensen et al. (2017) ; Poor et al. (2019) ; Tannier et al.
(2016)), others include field data on species. These data may be of various types (presence records,
genetic data, movement monitoring, etc.), they may characterize several biological levels (populations,
species, communities) and may be integrated at different stages of modeling (Correa Ayram et al.,
2016). For example, Estrada-Peña (2005) constructed a graph in which the nodes were defined from
a species distribution model (SDM), directly using the presence records to calibrate the connectivity
model. This approach, followed by other researchers since then, was recently summarized by Duflot
et al. (2018). Another way of including field data has been experimented by O’Brien et al. (2006)
who made use of telemetry data to calibrate the cost values assigned to the inter-patch links. In a
quite different approach, other researchers have correlated local connectivity metrics and presence or
abundance data, to investigate species’ responses to habitat accessibility (Clauzel et al., 2013 ; Foltête
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et al., 2012b ; Ribeiro et al., 2011). While the number of studies based on landscape graphs has in-
creased in ecology and conservation (Correa Ayram et al., 2016 ; Fletcher et al., 2016), favored by the
diffusion of open access specialized software applications (Csardi et Nepusz, 2006 ; Foltête et al., 2012a
; Saura et Torne, 2009), it is becoming difficult to have a clear view of the methodological options
improving the ecological relevance of landscape graphs. Some reviews have already been published
about graph construction methods (Galpern et al., 2011), connectivity metrics (Rayfield et al., 2011),
and types of operational applications (Bergsten et Zetterberg, 2013 ; Foltête et al., 2014 ; Zetterberg
et al., 2010), but little is known about the combination of these spatial graphs with empirical data
on species. Therefore, practitioners involved in landscape management as well as researchers working
in ecology and conservation would benefit greatly from a comprehensive state-of-the-art review of the
current implementation of such combinations.

In this paper, we propose a systematic review of the coupling of landscape graphs with field data
on species (limited to terrestrial species). As connectivity analyses can be conducted in studies aimed
at (i) improving our theoretical knowledge in ecology or alternatively at (ii) implementing operational
approaches in landscape planning and management, we question the link between the main objective
of the studies, the way landscape graphs are built and used, the type of field data and the way these
data are integrated into the analysis. From a corpus of scientific papers, our aim is to take stock of
the methods of coupling in relation to characteristics of the context of the studies. As we suspect
these characteristics to be interrelated, we seek to identify the main rationales behind the use of
field data, to finally define profiles of landscape graph applications. Our main hypothesis is that the
purpose of the studies determines the way biological data are considered, thereby making a contrast
between operational applications where landscape graphs are constructed in a simple, time-saving
and cost-efficient way (i.e. nodes and links directly delineated from a land-cover map), and scientific
applications where researchers integrate field data in complex ways to maximize the fit between model
and reality.

2 Data and methods

2.1 The corpus of landscape graph applications

We used the online database Scopus to gather the scientific literature dealing with landscape
graphs combined with field data on species. We restricted our search to scientific publications in
English. As the terminology of landscape connectivity may vary among authors (Gippoliti et Battisti,
2017 ; Moilanen, 2011), we defined a final request after several tests, by evaluating the efficiency of
each request by the percentage of inclusion of a checklist of 33 papers meeting our specifications. Four
sets of criteria were defined and combined into a single request (see appendix 1) :

— The first criterion required the presence of "ecological networks" or equivalent terms in the title,
the abstract, or the key-words : (landscape OR habitat OR ecological OR patch) AND (graph
OR network).

— The second set of criteria was related to the use of field data on species. It was mainly represented
by words expressing types of data or techniques of data acquisition in the title, the abstract,
or the key-words : ("field data" OR population OR demographic OR occurrence OR abundance
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OR presence OR richness OR suitability OR "radio-tracking" OR telemetry OR GPS OR CMR
OR genetic OR roadkill).

— The third set of criteria required the papers to focus on terrestrial biodiversity and to remove
the papers on hydrographic networks that are too specific to be mixed with non-aquatic net-
works. Papers whose title, abstract, or key-words include (maritime OR marine OR dendritic
OR riverscape OR "river network" OR stream) were excluded.

— The fourth criterion was the presence of at least one key paper on landscape graphs in the
references. Based on the number of citations given by Scopus, we listed six key papers cited
more than 300 times : Urban et Keitt (2001), Saura et Pascual-Hortal (2007), Urban et al.
(2009), Bunn et al. (2000), Minor et Urban (2008) and Pascual-Hortal et Saura (2006).

2.2 Systematic description of the papers

Each article was summarized using a systematic grid including first the type of biological data,
corresponding to the following non-exclusive items : presence, abundance, species diversity, telemetry,
genetic diversity, other.

Five topics were also described : (1) geographical and biological framework, (2) purpose of the
study, (3) involvement of stakeholders, (4) graph construction, (5) connectivity analysis.

(1) The geographical framework was documented by the country and the region of the study. The
biological characteristics were the species under consideration, its habitat, and the type of movement
represented in the graph (daily movement, dispersal). To perform the statistical analyses, the geogra-
phical locations were clustered by continent, and the species were grouped into the following taxa :
mammals, birds, amphibians, insects (or arachnids), chiropterans, plants and "other taxa" in other
specific cases.

(2) From reading the title, the abstract, and the introduction, the purpose of the study was
categorized into one or more of the following items :

— Understanding : the aim is to understand the link between a biological feature of the population,
the species, or the community, and the functional connectivity modeled by the landscape graph.

— Prioritization : the aim is to identify key elements of the network likely to be protected or
monitored.

— Impact evaluation : the aim is to assess the impact of a potential or actual landscape change on
the network functionality.

— Network design : the aim is to define new components of the ecological network to improve its
global connectivity.

— Method design : the aim is to improve methods of ecological network modeling.

The purpose of each article was also described by the global design of the analysis, concerning
temporality and a posteriori analysis. Temporality (i.e. the way the temporal dimension was mana-
ged) included static, retrospective, and prospective approaches. Analyses linked biological data and
connectivity metrics to each other as follows :

— No link between biological data and metrics in analyses.
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— Biological data correlated with metrics, i.e. in a descriptive approach based on a visual or sta-
tistical investigation.

— Biological data modeled with metrics, i.e. used as the target variable in a statistical model in
which metrics are considered as explanatory variables of the biological response.

(3) The level of involvement of stakeholders (e.g., land-planning practitioners) was documented by
three non-exclusive possibilities corresponding to a growing order of involvement :

— Acknowledgment of stakeholders : the acknowledgments at the end of the paper mention a land-
planning practitioner or a non-academic organization.

— Data from stakeholders : in the method section, the authors explicitly mention a non-academic
organization (and non-national, i.e. not a national topographic service) as a data source.

— Stakeholders as co-authors : some of the authors of the papers come from a non-academic area.

(4) Items related to the graph construction itself concerned mainly the patch and link definitions.
By investigating the method section of the articles, we listed three approaches concerning patches :

— Land-cover-based patch : the patches are designed from land-cover classes only.

— Suitability-based patch : they are defined from a suitability map or another SDM output.

— Protected areas : patches are a set of protected areas or zones designed by field experts.

In landscape graphs, each patch may have its own weight in the connectivity analysis. This weight
is usually considered as a proxy of its demographic or carrying capacity (Urban et Keitt, 2001). We
observed three possibilities :

— Uniform weight patch : all patches have the same weight.

— Area-based weighting : each patch is weighted by its area, which is a priori the most common
option. In some specific cases, the patch is weighted by the area of a nearby resource patch (e.g.
Tournant et al. (2013)).

— Suitability-based weighting : the patches are weighted by a statistical indicator (specifically sum
or average) computed from the pixel values of a suitability map.

The links are also characterized by a weight which is most of the time the edge-to-edge distance
separating the patches connected by these links. Focusing on the data used to compute these distances
rather than on the computation details, we found three types of distance weighting :

— Euclidean link.

— Land-cover based link, resulting from least-cost distances (or resistance distances derived from
circuit theory) where a cost value is assigned to each land-cover class.

— Suitability-based link, i.e. least-cost distances where the costs are derived from a suitability map,
for instance the inverse of the presence probability.

(5) The connectivity analysis was first described by the level of analysis among the following
non-exclusive possibilities :

— Network-level : the analysis deals with the entire graph’s connectivity.

— Component-level : the analysis deals with the comparison of connectivity between components
(i.e. sub-graphs resulting from link pruning) or between clusters, i.e. compartments resulting
from a clustering method.

— Patch-level : the analysis is focused on the local connectivity computed for each patch.
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— Link-level : the analysis is focused on the links’ attributes (e.g. potential fluxes).

The graph analysis was then characterized by the type of connectivity metric computed from the
graph. We listed eight metrics among the most used ones, plus a class "other" corresponding to more
specific measures, and a class "no metric" when no measure was computed. The eight metrics are :

— Probability of Connectivity (PC), a global metric integrating both patch and link weights in a
measure of spatial interaction (Saura et Pascual-Hortal, 2007).

— Integral Index of Connectivity (IIC), a global metric of spatial interaction integrating patch
weight and a topological distance between patches (Pascual-Hortal et Saura, 2006).

— Delta Probability of Connectivity (dPC), a local metric used to identify the key patches, compu-
ted from the iterative removal of each patch with PC as the global reference (Saura et Pascual-
Hortal, 2007). We also included in this item the decomposition of this metric into three fractions
(Saura et Rubio, 2010).

— Delta Integration Index of Connectivity (dIIC), a local metric similar to dPC but using IIC as a
global reference (Pascual-Hortal et Saura, 2006). As previously, the decomposition of dIIC into
three fractions was included in this item.

— Betweenness Centrality Index (BC), applied with (Foltête et al., 2012a) or without (Zetterberg
et al., 2010) weighting of the graph elements. It represents the theoretical level of local transit.

— Flux (F), also named Area Weighted Flux (Foltête et al., 2012a), a local metric expressing the
potential of dispersal from a given patch.

— Degree (Dg), a topological measure derived from the global framework of graph theory and
equivalent to the number of links connected to a given patch.

— Expected Cluster Size (ECS), a landscape level metric corresponding to the area-weighted mean
cluster size (O’Brien et al., 2006).

2.3 Statistical analysis of the corpus

After the review stage, the topics of the previous grid were analyzed statistically by combining
the related variables and the types of biological data. Because of the qualitative nature of all the
variables, we performed multiple correspondence analyses (MCA). The principle of a MCA is to define
orthogonal factors synthesizing the variance of a qualitative dataset (Tenenhaus et Young, 1985). All
categories and all individuals (here the articles) are given coordinates in this multidimensional space.
We considered only the first two factors. When strong relationships were found between biological
data and the variables of a given topic, we expected biological data categories to be widely distributed
across the factorial space. Otherwise, this would mean no significant link existed between biological
data and the topic.

The link between biological data and the first topic (geographical and biological framework) was
analyzed separately using a first MCA. The topics 2 (purpose of the study), 3 (involvement of stake-
holders), and 4 (graph construction) were grouped because they form a consistent set to be compared
with biological data. As this part of the analysis includes numerous variables, the second MCA was
followed by Hierarchical Clustering (HC) applied using the Ward criterion to summarize information
and identify the main types of articles. The resulting typology was mapped to investigate the possible
geographical effect in the use of landscape graphs. Finally, the last topic (connectivity analysis) was
investigated separately by means of a third MCA.
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3 Results

The request implemented on 12 December 2018 returned 338 articles. As several methods of land-
scape connectivity modeling rely on a partially similar vocabulary (e.g. approaches focused on spatial
genetics), many of the 338 articles were outside the scope of our investigation. After a systematic
reading to finalize the selection, our corpus included 71 articles (see list in Appendix 2). The articles
were published from 2005 to 2018, although a large majority (82 %) was published after 2012 (Fig. 1).

Figure 1 – Number of articles combining landscape graphs and biological data published every year from 2005 to 2018

Among the five types of data, presence data are used in 61 % of the articles, followed by abundance
data (18 %), genetic diversity and GPS-track data (11 % for each type), and species diversity data
(8 %). Other data amount to 7 % and include for example evidence of breeding, density, or roadkill
data.

3.1 Are biological data specific to the geographical and biological framework ?

Studies are unequally distributed over the five continents, with 52.1 % of them in Europe, 23.9 %
in North America, 12.7 % in South America, 11.3 % in Asia, and only 1.4 % in Africa. The two
dominant taxa are mammals (35.2 %) and birds (23.9 %), the other main taxa being plants (16.9 %),
insects (11.3 %), and amphibians (8.5 %). The studied habitats are mainly forests (57.7 %), followed
by grasslands and agricultural habitats (14.4 %), and wetlands and aquatic habitats (11.3 %). A large
proportion of the articles (26.8 %) dealt with more complex habitats such as hedgerows or urban
areas (hereafter "other habitats"). The type of movement analyzed is mainly dispersal (87.3 %) and
secondarily daily movements (12.7 %).

The MCA combining biological data and geographical and biological characteristics primarily
highlights studies concerning wetlands and amphibians, without evidencing any connection with a
particular type of biological data (Fig. 2). The location of the items "plants", "insects", and "grass-
lands" close to "species diversity", "genetic diversity", and "abundance" also suggests a link between
them, in studies more frequently conducted in Europe. However, the investigation of cross frequencies
(Appendix 3) shows that these associations are only partial. For example, genetic data never come
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from grasslands in these studies but concern plants and insects in 37.5 % and 12.5 % of the cases. Over
half of the abundance estimations concern insect populations. Almost all the species diversity measures
concern plants (five out of six studies), a third of them in grasslands. The location of the other items
in the factorial space suggests that studies using presence or telemetry data frequently concern forest
species of mammals and birds. Among these former studies some deal with daily movements on other
continents than Europe.

Figure 2 – Factorial space of the variables describing the geographical and biological framework of the articles. The
terms in the grey rectangles represent the types of biological data. Note that the single study applied to Africa was

removed to avoid a category associated with too low a frequency

3.2 Does the use of biological data depend on the objective of the graph analysis ?

The studies aimed at understanding the relationships between landscape connectivity and popu-
lations, species, or communities amount to not quite half of the corpus (46.5 %). The prioritization
of elements or components of the ecological networks is present in 25.3 % of the articles. Then comes
the impact evaluation (16.9 %) followed by the network design (12.7 %) and the methodological ap-
proaches (9.9 %). Most of the studies rely on a static approach (80.3 %) as only 12.7 % and 7.0 %
of them are based on prospective and retrospective approaches respectively. Among the 71 articles,
57.7 % integrate stakeholders through acknowledgements and/or by the use of their data. Stakeholders
are among the authors in only 16.9 % of the articles.

Globally, biological data are included in graph construction (i.e. before the connectivity analysis)
in 45 articles (63.4 %). This integration more frequently concerns the definition of patches, delineated
(36.6 %) and/or weighted (21.1 %) by using a suitability map or another SDM output. Biological data
can also be used to define and weight the links (23.9 %), either by converting presence probabilities
into a set of cost values (15.5 %) or less frequently following other approaches from telemetry data or
genetic differentiation measures (8.4 %). Conversely, biological data are used after the graph analysis
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in 42.2 % of the articles, correlated with connectivity metrics (14.1 %) and more frequently used as
target variables in explanatory models (28.2 %).

The MCA applied to all these criteria results in a marked decrease in inertia from the first factor
containing 46.9 % of variance (Fig. 3). Given the position of categories along the x-axis, the first
factor contrasts (1) studies where biological data are integrated in graph construction, and (2) studies
where biological data are a posteriori correlated or modeled with connectivity metrics. In the first case
(left side of Fig. 3), more related to presence and other data, patches and links are preferably defined
and weighted from suitability maps or other outcomes of SDM. This approach is often adopted when
pursuing operational objectives such as prioritization and network design. In the second case (right
side of Fig. 3) where species diversity and abundance data are preferably used, graph elements are
more frequently defined from land-cover maps only. This approach tends to be implemented when
the main purpose is to understand the relationships between the species’ ecological response and the
connectivity levels inferred from metrics. Beyond this main contrast, the second factorial axis provides
complementary information by emphasizing a gradient of stakeholder involvements, that is more pro-
minent in approaches of method design and using telemetry data and secondarily genetic data (high
side of Fig. 3), but is less frequent in studies dealing with impact evaluation either retrospectively or
prospectively (low side of Fig. 3).

Figure 3 – Factorial space of the variables describing the aim of the articles, the graph applications, and the
involvement of the stakeholders. The terms in the grey rectangles represent the types of biological data.

The application of the HC to the factorial axes provided the dendrogram we cut to define four
classes (Fig. 4). These classes have relatively homogeneous frequencies and can be nested into a higher-
level where classes 1 and 2 contrast with classes 3 and 4. According to their position in the factorial
space and to the frequencies of each category (see Appendix 3), these classes can be summarized as
follows :
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— Class 1 "deductive approach, Euclidean links" : studies aimed at understanding the relationships
between populations, species, or communities and habitat connectivity, by correlating biological
data with metrics after the graph analysis. The data used are mainly presence (55 %), abundance
(40 %), and/or species diversity (15 %). In these studies, patches are mainly defined from land-
cover maps (90 %) whereas links are most often Euclidean (80 %). They rarely mention non-
academic stakeholders.

— Class 2 "deductive approach, functional links" : studies directed at similar objectives as those
from class 1 but using a larger panel of data types. Patches (85 %) as well as links (77 %) are
mainly defined from land-cover maps. A strong link with stakeholders is mentioned in the papers
(role in data acquisition and/or presence as co-author).

— Class 3 "operational approach, impact evaluation" : studies aimed at evaluating the impact of
a past or future landscape change. Presence data are used to define the patches from an SDM
(62 %) whereas links are mainly Euclidean (76 %). Few links with stakeholders are mentioned.

— Class 4 "operational approach, network design" : studies with an operational aim in which pre-
sence data are integrated in graph construction via an SDM to define patches (65 %) and to
weight links (47 %). The connectivity analysis does not lead to a statistical investigation with
biological data. An explicit link with stakeholders is frequent.

Figure 4 – Hierarchical Ascendant Classification applied to the first two factors of MCA. (a) The dotted line
represents the cutoff defining four classes. (b) These classes are represented by individual positions and 50 % ellipses in

the factorial space.

The map of field locations shows that the four classes are distributed worldwide (Fig. 5). But,
deductive approaches tend to be more commonly adopted in Europe (specifically in Spain and France)
than in North America.

3.3 The connectivity analyses

The connectivity analyses sometimes rely on a visual interpretation of maps without computation
of connectivity metrics (eight articles). Overall, patch-level analyses are the most common (71.8 %),
being much more frequent than global-level (25.4 %), component-level (15.5 %), and link-level analyses
(11.3 %). The dominance of patch-level analyses is supported by the frequent occurrence of the metrics
dPC (26.8 %), F (16.9 %), dIIC (15.5 %), BC (15.5 %), and Dg (9.9 %). Global-level metrics such
as PC and IIC are used only eight (11.3 %) and seven (9.9 %) times respectively. The most frequent
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Figure 5 – Map of the typology of use of biological data in landscape graphs.

component-level metric is the ECS (5.6 %). It should be noted that a total of 20 other metrics (28.2 %)
are used in only one or two articles.

An analysis combining the biological data and the graph analysis outcomes is carried out in 42.2 %
of cases. Among the articles in which these data are analyzed jointly, we can distinguish (i) explana-
tory approaches based on statistical modeling (e.g. regression) where connectivity metrics are used as
explanatory variables of biological responses measured by biological data (28.1 %), and (ii) descriptive
approaches in which biological data and graph analysis are simply correlated, statistically or visually
(14.1 %).

In the factorial space combining connectivity analyses and the types of biological data, genetic
data prove to be specific to particular approaches (right side of Fig. 6). These data, sometimes used in
patch-level analyses, are more frequently associated either with link-level analyses conducted without
metric computation, as for example in Galpern et al. (2012) and Keller et al. (2013), or with analyses
performed at the component-level as in Moran-Lopez et al. (2016). These specific approaches contrast
with common patch-level analyses linked to presence data and based on a series of local metrics such
as delta PC, delta IIC, BC index, or Degree (left side of Fig. 6). The categories positioned at both
extremities of axis 2 represent two specific cases encountered in the articles : (1) the studies in which a
global-level analysis is conducted, frequently based on PC or IIC metrics, but without any particular
link with a type of biological data, (2) the studies dealing with species diversity and abundance data,
more often based on the metric flux.
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Figure 6 – Factorial space of the variables describing the connectivity analyses. The terms in the dark grey rectangles
represent the types of biological data.

4 Discussion

The number of studies of landscape connectivity has been rising at a sustained pace since 2005
(Correa Ayram et al., 2016 ; Fletcher et al., 2016). Among these studies, approaches based on land-
scape graphs have been employed frequently, especially since 2012. The success of these approaches
may be explained by the publication of reviews about graph construction (Galpern et al., 2011) and
graph-theoretic metrics (Rayfield et al., 2011), by empirical research into connectivity metrics (e.g.
Saura et Rubio (2010)), by the availability of software to perform graph-based analyses (Foltête et al.,
2012a ; Saura et Torne, 2009), and by the rising interest of stakeholders and policy-makers in connec-
tivity conservation (Correa Ayram et al., 2016). Despite growing interest in connectivity modeling,
and considering the large number of references reviewed in the syntheses by Fletcher et al. (2016) and
Correa Ayram et al. (2016) about landscape connectivity (370 and 162 respectively), we found relati-
vely few articles (i.e. 71) using biological data in combination with landscape graphs. This is all the
more unfortunate because many studies assume (1) that connectivity has a positive influence on bio-
diversity or (2) that the connectivity model is a reliable representation of the actual habitat network,
but without validating these assumptions from field data. Although the small number of articles using
biological data was quite limiting for carrying out statistical analyses, our review clearly highlighted
a preponderance of articles dealing with mammals and birds in forests of Europe and North America.
This result recalls that obtained from a larger pool of articles in the review by Correa Ayram et al.
(2016), and this should encourage a greater diversity in the studied topics as connectivity conservation
is a pervasive issue across taxa and regions.

A main contrast in the use of biological data : Prior coupling vs a posteriori analysis

Our review shows that biological data are integrated into the analysis at different stages depending
on the objective, and that this integration is performed in many different ways. Specifically, the second
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MCA encompassing variables describing the purpose and application of landscape graphs and the in-
volvement of the stakeholders revealed a main contrast between two objectives (Fig. 3). First, articles
from classes 1 and 2 (Fig. 4) aim at providing knowledge about relationships between biological res-
ponses and landscape connectivity. In these articles, graph nodes are identified from relatively simple
data, e.g. a land-cover map, without integrating biological data in the initial graph’s construction
stage. Once the connectivity metrics have been computed, biological data are considered as target
variables in a statistical analysis in which connectivity metrics are used as explanatory variables.
Examples of such a hypothetico-deductive approach can be seen in Martín-Queller et Saura (2013) or
Mony et al. (2018). Separating the connectivity modeling step and the use of biological data amounts
to considering connectivity, measured by metrics, as a potential driver of the biological response. This
deductive reasoning aims at (i) providing new knowledge about the influence of landscape connectivity
on species, (ii) evaluating the strength of this relationship, and (iii) identifying the spatial scale at
which it occurs. It is worth noting that such an approach requires land-cover data that are suitable
for mapping the habitat of the focal species and its dispersal paths. It also assumes that graph-based
modeling captures connectivity patterns well so that connectivity metrics actually account for the
influence of landscape connectivity on biological responses.

We return to the initial data by focusing on classes 1 and 2 to specify how these deductive ap-
proaches were conducted. The most frequent design is to analyze a given species at patch-level. This
consists in explaining species presence (e.g. Andersson et Bodin (2009) ; Awade et al. (2012) ; Foltête
et al. (2012b) ; Melles et al. (2012) ; Song et Kim (2016)) or abundance (e.g. Estrada-Peña (2005) ;
Betbeder et al. (2017)) in habitat patches by including connectivity metrics in a regression model. In
some cases concerning birds or plants, regression or correlation analyses performed at the community
level attest to the effect of connectivity either on patch richness (Mony et al., 2018) or on an inter-
patch dissimilarity measure (Muratet et al., 2013). Of the papers referring to the deductive approach,
only a smallish proportion (27 %) includes a sensitivity analysis to evaluate how statistical dependence
is influenced by cost values (Foltête et Giraudoux, 2012), minimum patch size (Andersson et Bodin,
2009), the distance of graph pruning (Koh et al., 2013 ; Muratet et al., 2013) or the setting of the
dispersal kernel in the metric calculation (Martín-Queller et al., 2017 ; Gil-Tena et al., 2014). Finally,
several other papers report more specific protocols adapted to particular contexts.

Conversely, the opposite objective (represented by classes 3 and 4, Fig. 4) aims at prioritizing key
habitat patches or supporting ecological network design. In this case, biological data, most of the time
presence data, are directly embedded in the definition of patches from an SDM or another output of
suitability modeling, following procedures synthesized in Duflot et al. (2018). In these approaches, a
first step of modeling precedes the connectivity analysis, leading to map presence probabilities. These
probabilities are thresholded to define the habitat patches, and sometimes used to set the cost values
defining the links. The status given to the quantification of connectivity makes a big difference with
the previous approach. Here, the connectivity computations derived from the landscape graph are not
used to test a specific assumption about the landscape’s influence. In contrast, they serve as a decision
support tool in a rationale of action. This means that the positive influence of connectivity on species
is not questioned but it is rather considered as an initial postulate.
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Although percentages of articles corresponding to these contrasted objectives (66.2 % including
biological data in the graph construction compared with 42.2 % analyzing biological data a poste-
riori) show that these rationales are in most cases exclusive, we found 12 articles (8.4 %) in which
both approaches are present. They correspond to various specific cases integrating different biological
data. For example, Ribeiro et al. (2011) conducted a field campaign to select the patches with actual
presence of amphibians. They then assessed the correlation between connectivity metrics and species
richness in a second step. Other researchers have included field data in the definition of links, as in
O’Brien et al. (2006) and Galpern et al. (2012) who brought into play telemetry data for defining the
cost values used to compute the links. Galpern et al. (2012) finally compared genetic data with the
outcomes of connectivity analyses, whereas O’Brien et al. (2006) used independent telemetry data to
validate the cost values definition. In the same vein, Bergerot et al. (2013) carried out an individual
release procedure to set up an inter-patch movement model. It was used to construct the landscape
graph before comparing the graph’s components with the results of a mass release-recapture operation.

The relationship between the purpose of the study and the region where it was carried out was not
straightforward, but we observed a trend whereby studies with operational objectives were often per-
formed in North America (Fig. 5). The involvement of public agencies in the research on connectivity
such as the USDA, the US Fish and Wildlife service, or Parks Canada, already noticed by Correa Ay-
ram et al. (2016) and apparent in some of the articles we reviewed, may be a reason for such a result.

A secondary contrast related to functional connectivity

Apart from this dichotomy between operational and academic objectives, we observed in the same
analysis (factor 2 in Fig. 3) a gradient in the way graph links are defined. This gradient contrasts
Euclidean links (i.e. uniform matrix) on the one hand and, on the other hand, suitability-based links
and land-cover based links (i.e. weighted by least-cost distances) that are validated or not by biological
data. This gradient additionally suggests that studies aiming at modeling functional connectivity ra-
ther than structural connectivity make wider use of telemetry data. Indeed, eight articles from classes
2 and 4 are based upon this kind of data whereas no articles from classes 1 and 3 use them. Including
telemetry data in the definition of links is associated here with the greater involvement of stakeholders.
Such a result may not be universal but more probably stems from the frequent use of telemetry in
studies carried out in North America, where investment in the acquisition of data reflecting functional
connectivity may be higher.

Focusing on the studies in which the functional aspect of connectivity is better considered (posi-
tive coordinates on factor 2 in Fig. 3), classes 2 and 4 differ both in their aims (providing knowledge
vs supporting action, respectively) and the main types of data they include (54 % using genetic or
telemetry data vs 71 % using presence data, respectively). Presence data can be easily and affordably
obtained compared with genetic or telemetry data. The latter are technically more sophisticated and
demand a more intensive collection effort in the field and/or in the lab. This probably explains the
dominance of presence data (61 %) in the literature we reviewed. This difference may also explain why
studies with operational purposes are mainly based on presence data, because the time available for
decision-making is often much more constrained than the time available for pure research. However, a
direct link between the type of data and ecological processes underlying connectivity is critical to the
graph’s relevance whatever its purpose. In this context, several papers highlight that habitat suitabi-
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lity is often a poor predictor of dispersal or gene flow for numerous reasons, and that data directly
related to movement or gene flow should be considered instead (e.g. Spear et al. (2010) ; Peterman
et al. (2014) ; Khimoun et al. (2017)). It does not mean that SDMs are pointless in graph construc-
tion, as they could be particularly relevant for delineating patches. But their utility for calibrating the
cost values used in the least-cost paths raises questions. In addition, designing movement corridors or
reserves for conservation aims not only at satisfying biological needs in different places for a species of
concern over its life-cycle, but it should also maintain some genetic exchanges between populations to
warrant their long-term viability and adaptive potential (Allendorf et al., 2012 ; Lindenmayer et Fi-
scher, 2006). While movements and gene flow are both important and complementary for conservation
purposes, connectivity modeling should integrate different ecological data depending on the precise
biological response that is considered.

Two key-levels of integration for biological data

Although a large range of biological data were used in the studies we reviewed, different types of
biological data were rarely used in the same study. Due to the influence of landscape structure on
both extinction/colonization and migration/drift equilibria driving species and genetic diversities, res-
pectively (Vellend et Geber, 2005), diversity data have considerable potential for improving landscape
graph-based approaches. It is noteworthy that these data were used in very different ways in papers
coupling them with landscape graphs. Genetic data were mainly used at link level to analyze genetic
differentiation between locations (seven out of eight articles, versus two articles only using within-
location genetic diversity), whereas species diversity data were almost exclusively used at patch level
to derive species diversity values within locations (i.e. alpha diversity ; five out of six articles, versus
one article only using between-locations diversity, i.e. beta diversity ; see Figure 5). In addition, spe-
cies alpha diversity was always used as a biological response to be explained statistically from some
connectivity measures obtained from the landscape graph, whereas genetic data were used either as an
input to help graph construction or as a biological response that was correlated with some connecti-
vity metrics (six and four articles, respectively). This difference in treatment between species diversity
and genetic diversity has a long history despite their theoretical connections as responses to similar
processes (Vellend et Geber (2005), but see Taberlet et al. (2012)). Indeed, populations occurring in
small and isolated habitat patches are exposed to a higher genetic drift and a lower gene flow than
large and continuous populations, and both processes are expected to lead simultaneously to lower
within-population genetic diversity and greater genetic divergence between populations (Keyghobadi,
2007). In the same way, communities occurring in small and isolated habitat patches are expected
to harbor a lower species richness and to differ more widely from each other, because of a higher
extinction rate and a reduced colonization rate (MacArthur et Wilson, 1967). Thus, whether diversity
is measured within or between entities (patches, populations, communities, etc.), and whether it is
assessed at the genetic or species level, the value obtained always results from (at least) two processes
operating within and between the entities considered. In this framework, graph theory offers a flexible
and valuable landscape modeling approach, as metrics can be extracted from graphs to reflect processes
operating at the patch level only, at the link level only, or to integrate both kinds of processes in the
same connectivity measure (Pascual-Hortal et Saura, 2006 ; Saura et Pascual-Hortal, 2007). However,
this opportunity is still under-used because even in articles coupling species or genetic diversity with
a landscape graph, we found only two articles (Schoville et al., 2018 ; Ribeiro et al., 2011) and a single
article (Neel, 2008) trying to explain levels of species diversity and genetic diversity, respectively, by
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connectivity metrics integrating both patch and link properties.

Which strategy should we adopt in applying landscape graphs ?

In light of the findings of our review, one may ask which is the more relevant approach to landscape
graph modeling. This mainly relates to the opposition discussed above between prior coupling and a
posteriori analysis. Should we directly incorporate biological data in graph construction, or use it once
the graph has been constructed, to validate it or to verify the influence of connectivity ? As researchers
involved in scientific approaches, our initial reflex would be to advocate the second proposition, where
the role of habitat connectivity and the reliability of the model have to be questioned before being
applied in an operational rationale. Theoretically, if the connectivity metric assumed to represent the
process under consideration proves to be significantly linked to biological data, the graph could be used
as a decision support tool, but otherwise not. A positive statistical test provides reassurance about
the approach, but such validation should not be overestimated, especially when biological data are
limited to presence data. A significant relationship between a graph metric and biological data only
provides a global validation of the entire modeling approach ; it does not inform us about the details
of the relationship and the strengths and weaknesses of the model. Indeed, uncertainty may remain
with respect to (1) the definition of patches, (2) the definition of links, (3) the choice and the setting
of a metric for quantifying connectivity, and finally (4) the role of connectivity. Only a sensitivity
analysis applied to the first three parameters could help to clarify their area of validity. Thus, the
deductive approach seems to be preferable because it enhances the model’s overall legitimacy, but any
application should be subject to a sensitivity analysis to justify and specify the modeling choices.

Let us turn now to the direct incorporation of biological data in graph construction. Our review
shows that the more frequent approach is to delineate habitat patches from outputs of a species
distribution model. Since such models are usually the output of statistical approaches including a
validation step, it can be taken that the patches are validated by empirical data. The interest of this
approach is to provide more realistic habitat patches, consistent with the concept of ecological niches,
and not based on a land-cover map alone. However, the absence of a posteriori validation concerns
the subsequent graph construction choices as to the definition and weighting of the links and the
parameterization of the other criteria mentioned above. Consequently, to be reliable, this approach
should preferably be supplemented by a validation process focused on the links and the connectivity
metrics. In this perspective, the "gold standard" approach should ideally include additional data to
calibrate or validate the links. Zeller et al. (2018) show that the type of biological data best reflecting
movement patterns are genetic and telemetry data. Because genetic structure mainly results from
multi-generational dispersal movements (Keyghobadi, 2007), genetic data are therefore a reliable proxy
for the dispersal movements which matter most for species conservation (Zeller et al., 2012). However,
genetic data provide limited information about current habitat connectivity in cases where recent
changes have not yet affected genetic structure due to time lags (Landguth et al., 2010). In such cases,
telemetry data are probably more helpful. In sum, we think that genetic and telemetry data should be
used to validate landscape graph models, especially when they rely only upon land use and presence
data.
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5 Conclusion

This review has shown a major contrast in studies coupling landscape graphs and biological data
depending on their main objective. In approaches aimed at providing knowledge, patches are defi-
ned from land-cover maps and biological data are correlated a posteriori with connectivity metrics.
Conversely, in operational approaches, patches are more frequently derived from SDMs while directly
including biological data in graph construction. The second contrast concerns the more or less func-
tional nature of links and highlights the role of telemetry and genetic data in validating them.

Beyond these main contrasts, the review shows that landscape graphs can benefit from field data
of different types at varying scales. The great variability of approaches adopted in the articles we have
reviewed reveals the flexible nature of these tools. Since field data allow us to understand empirically
ecological processes such as dispersal and its dependence on landscape connectivity, we encourage
others to multiply studies coupling landscape graphs and field data. While biological data may reflect
a functional biological response to landscape connectivity, they are usually gathered from a limited set
of locations. Therefore, their complementarity with landscape graphs, which represent the exhaustive
set of potential habitat patches, is an additional reason for encouraging this coupling. This may theore-
tically improve the reliability of connectivity analyses and the way they are carried out. Nevertheless,
we do not discard the results from all studies performed without field data as they indirectly benefit
from methodological improvements and ecological knowledge acquired in studies based on field data.
For example, Clevenger et al. (2002) showed that connectivity models based on information derived
from the literature were a better proxy of empirical models than those designed exclusively from expert
opinion. Finally, whether ecological data are used as input in the graph construction process or as a
biological response that has to be explained statistically by certain landscape properties, it is crucial
to choose both the appropriate data and graph metrics in accordance with the biological process under
consideration.
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Annexe A2

Combining landscape and genetic graphs to
address key issues in landscape genetics

Abstract
Context
All the components of landscape and genetic structures can be associated with the nodes and links of landscape graphs and
genetic graphs. Yet, these graphs have long been used separately despite the potential for their combined use in landscape
genetics.
Objectives
First, comparing these graphs could be an effective way to disentangle the influence of intra-patch features from that of inter-
patch connectivity on genetic structure or to assess whether intra-population genetic diversity and inter-population genetic
differentiation are sensitive to the same landscape influences.
Methods
Moreover, because graph pruning determines which connections between nodes are considered in calculating neighbourhood-
based metrics or graph-based distances, comparing the metrics or distances derived from differently pruned graphs can be an
effective way to identify the scale of landscape effects or the scale at which both gene flow and drift determine genetic differen-
tiation. Similarly, comparing node partitions in both types of graphs could strengthen the validity of barrier identifications.
Results
Second, beyond mere comparisons, the integration of landscape and genetic graphs through gravity models can further enhance
their joint use for theoretical and applied objectives alike.
Conclusion
We thus believe that future research could illustrate and enhance the relevance of these methods for a wider range of appli-
cations in landscape genetics.

Keywords : landscape genetics, graph theory, habitat connectivity, dispersal, gene flow
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1 Introduction

Understanding how species move and settle within landscapes is key to designing conservation
programmes to counter the continuing erosion of biodiversity (Barton et al., 2015 ; Bennett et al.,
2006 ; Jeltsch et al., 2013 ; Kool et al., 2013). For the species whose populations are scattered over
discontinuous habitat patches embedded in the landscape matrix (Bowne et Bowers, 2004), modelling
habitat connectivity involves studying the properties of a spatial network. Accordingly, among the
wide range of methods for modelling connectivity (Correa Ayram et al., 2016), those derived from
graph theory prove relevant (Dale et Fortin, 2010 ; Galpern et al., 2011).

Landscape graphs are used in landscape ecology to represent habitat networks (Urban et Keitt,
2001). A landscape graph is a set of habitat patches (nodes) connected by a set of potential dispersal
paths (links)(Box 1). Several factors lie behind the success of landscape graphs (Galpern et al., 2011).
First, the habitat network topology they bring out often provides key insights into population spatial
structure and dispersal patterns (Brooks, 2003 ; Keitt et al., 1997 ; Ortiz-Rodríguez et al., 2019).
Then, they are widely used because of their computational potential, providing a suitable framework
for calculating a broad range of connectivity metrics, e.g. as a decision-making aid to indicate which
patches should be conserved as a priority (Foltête et al., 2014). Further, landscape graphs are of great
cartographic interest, enabling land planners to fully grasp the variations in connectivity in the re-
gions they manage (Bergsten et Zetterberg, 2013). All these applications are made possible because
landscape graphs rely upon an exhaustive representation of the potential habitat patches within the
landscape.

The way the basic elements (i.e. nodes and links) of landscape graphs are defined is a critical issue
that challenges their ecological validity (Box 1). At this stage, assumptions have to be made about
species’ habitat preferences and dispersal capacities, but these assumptions are rarely tested and vali-
dated with biological data. This is probably the biggest pitfall with graph-based habitat connectivity
modelling (Correa Ayram et al., 2016 ; Kadoya, 2009 ; Moilanen, 2011).

Several types of biological data can be used in graph-based connectivity modelling (Foltête et al.,
2020). When focusing on single species, genetic data or movement data obtained by telemetry reflect
landscape resistance to individual movements better than simple presence data do (Diniz et al., 2020
; Zeller et al., 2018). When using movement data, it is hardly possible to distinguish home-range
movements from dispersal movements (Koenig et al., 1996), potentially skewing estimates of land-
scape resistance to dispersal (Horskins et al., 2006 ; Mateo-Sánchez et al., 2015 ; Zeller et al., 2012).
In contrast, genetic data reflect movements of successful breeders over several generations, making
neutral genetic diversity structure a reliable proxy for the dispersal movements that matter most for
species conservation (Koenig et al., 1996 ; Zeller et al., 2012). When individuals can easily disperse
between habitat patches, they spread their genes thereby maintaining genetic diversity within patches
and preventing any increase in genetic differentiation between patches (Keyghobadi, 2007). Therefore,
genetic data can be used to infer landscape influences on genetic structure (Manel et al., 2003 ; Storfer
et al., 2007). Although it used to be costly and difficult to obtain genetic data, they are now increa-
singly available for a wide range of species (Miraldo et al., 2016) and of direct benefit for landscape
genetic studies.

20



In landscape genetics, studying gene flow events between discrete populations also involves stu-
dying the properties of a spatial network (Murphy et al., 2016). The nodes of such a network, hereafter
called a genetic graph, represent populations or individuals (Box 2). The links represent substantial
gene flow between them and are weighted by genetic distances. Analyses of genetic graphs contribute
to a better understanding of how landscape influences genetic response because the graphs are based
on empirical biological data and are free from any prior assumptions. The main drawback with genetic
graphs is that they are often constructed from small population samples, especially when the study
area is too large to be sampled exhaustively because data acquisition is time-consuming and expensive.
Only in rare instances have populations been sampled exhaustively (Keller et al., 2013 ; Murphy et al.,
2010a ; Watts et al., 2015) although it has been pointed out that missing populations can substantially
affect inferences (Albert et al., 2013 ; Koen et al., 2013 ; Naujokaitis-Lewis et al., 2013).

Landscape graphs and genetic graphs depict the same ecological reality but they have mainly
been used in two separate research fields : landscape ecology and population genetics, respectively.
Landscape graphs are derived from the assumed influence of landscape connectivity on biological
fluxes. They cover the exhaustive set of potential habitat patches but they may lack ecological va-
lidity. Conversely, genetic graphs empirically express the outcome of biological fluxes but they are
restricted to samples of populations or individuals. Both types of graph have been used in many
studies (Galpern et al., 2011 ; Greenbaum et Fefferman, 2017)(Online Resource 1) but for the most
part separately. Previous works have called for the use of genetic data in connectivity modelling with
landscape graphs (Foltête et Vuidel, 2017 ; Luque et al., 2012) but without mentioning explicitly
the complementarity between landscape and genetic graphs. Similarly, Garroway et al. (2011), Manel
et Holderegger (2013) and Murphy et al. (2016) have suggested that they could be advantageously
compared or even integrated but they failed to detail such an approach as it was not the main focus
of their work. We believe that identifying methods for comparing and integrating landscape and ge-
netic graphs could further extend the contribution of graph-theoretic approaches to landscape genetics.

As a multidisciplinary field (Dyer, 2015a), landscape genetics inherits both its methods and its
research questions from landscape ecology and population genetics. Whereas a landscape ecologist
asks whether the amount of habitat matters more than habitat connectivity for biological responses
(Lindenmayer et al., 2020), a population geneticist asks whether landscape structure influences local
genetic diversity are genetic differentiation similarly (Keyghobadi et al., 2005). Furthermore, landscape
ecology studies investigating the ’scale of effect’ of the landscape on biological responses (Jackson et
Fahrig, 2012 ; Miguet et al., 2016) mirror population genetics studies seeking to identify either the
neighbourhood size or the scale at which both gene flow and drift determine genetic differentiation
at equilibrium (Hardy et Vekemans, 1999 ; Van Strien et al., 2015). Other parallel questions are to
be found and we believe that each of them can be addressed in analyses involving the node and link
properties of landscape and genetic graphs. Therefore, combining landscape graphs and genetic graphs
could be one more step towards the true interdisciplinary connection between landscape ecology and
population genetics that landscape genetics has been looking for. The objective of this paper is to
provide an outline answer to a rather broad question : ’Why and how should we use genetic graphs
and landscape graphs conjointly to address key issues in landscape genetics ?’ We begin by discussing
the theoretical questions that could be answered by a comparison of these graphs. We then go beyond
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mere comparisons to imagine actually integrating these tools in order to benefit from their respective
advantages. We end with perspectives for future investigation.

Box 1 : Landscape graphs
Landscape graphs are used for analysing networks of habitat patches and have grown in po-

pularity following the seminal paper of Urban et Keitt (2001). In these spatially-explicit graphs,
nodes are habitat patches and links represent potential dispersal paths between them (Figure 7).
They are built from geographical layers of landscape features potentially influencing species mo-
vements and distribution. Habitat patches (nodes) are delineated according to land cover criteria
(Foltête et al., 2014) or habitat suitability thresholds (Duflot et al., 2018). Links are spatially
delimited paths that take into account landscape feature resistance through least-cost path cal-
culation (Foltête et al., 2012a) or use of circuit theory (Brodie et al., 2016).

Node and link weights often depict the heterogeneity of habitat properties and accessibility
(Dale et Fortin, 2010). Link weights correspond to ’landscape distances’ such as resistance, least-
cost, or geodesic distances. Similarly, habitat patches are often weighted by a proxy of their
demographic capacity, usually their area.

The graph can be pruned to select a subset of links between habitat patches. Pruning can speed
up the computations (Foltête et al., 2012a) and is useful for selecting the links corresponding to
direct movements between patches, e.g. by removing links corresponding to distances greater than
the species maximum dispersal distance.

Then, connectivity metrics can be computed on the scale of the entire graph, a component
of the graph or an individual patch. Largely inspired by the metapopulation framework, graph-
theoretic connectivity metrics take into account patch area as well as dispersal probabilities bet-
ween patches (e.g. PC, IIC)(Saura et Pascual-Hortal, 2007). So-called ’delta metrics’ indicate the
unique contribution of each node to the connectivity metric computed for the entire graph and
can even be broken down into several fractions for a better understanding of their functional role
(Saura et Rubio, 2010). To help pick among the myriad different metrics, several authors propose
synthetic metric classifications (Baranyi et al., 2011 ; Calabrese et Fagan, 2004 ; Rayfield et al.,
2011).

Landscape graph nodes may also be subjected to modularity analyses revealing the existence
of well connected clusters of habitat patches (Foltête et Vuidel, 2017). Besides, landscape distance
matrices taking into account the topology of the habitat network can be derived from the graphs
and used in functional connectivity analyses (Etherington, 2012 ; Pinto et Keitt, 2009).

Landscape graphs are therefore useful for supporting the prioritisation of patches and corri-
dors for conservation or restoration measures, for assessing the impacts of specific infrastructures
(Foltête et al., 2014) and also for deriving relevant explanatory variables for subsequent analyses
(Foltête et al., 2012b ; Pereira et al., 2011). Unfortunately, without validation of hypotheses about
species habitat distribution and dispersal capacities made for constructing the graph, the results
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of these approaches are questionable. Yet the use of empirical data in graph-based connectivity
analyses is rarely directed at ’validating’ graph construction (Foltête et al., 2020).

Habitat
patch

Dispersal
path

Figure 7 – Schematic representation of a landscape graph

Box 2 : Genetic graphs
Genetic graphs represent the genetic structure of a network of sampled populations (i.e. groups

of individuals sampled at the same site (Dyer et Nason, 2004) or individuals (Castillo et al., 2016)).
Input data are therefore multilocus individual genotypes. The links are represented by straight
lines, not depicting physical paths, and are weighted by genetic distances such as FST (Munwes
et al., 2010), DPS (Naujokaitis-Lewis et al., 2013), Euclidean genetic distance (Dyer et Nason,
2004) or others.

Analyses derived from these graphs can be directed at identifying direct dispersal paths follo-
wed by propagules between populations (Dyer et Nason, 2004) or key populations for the genetic
connectivity of the network (Cross et al., 2018). Such analyses are based on visual inspection of
these spatially-explicit graphs and on metric calculation. Alternatively, the graph links may form
the basis for inferring landscape resistance (Garroway et al., 2011). In most cases, the complete set
of links should be pruned and the objective of the analyses is to determine which pruning method
to use. To study direct dispersal networks, maximum dispersal distance thresholds, topological
constraints or the conditional independence principle (Dyer et Nason, 2004) can be powerful tools
although they depend on previous knowledge of the study species and/or gene flow frequency
(Savary et al., in correction). Because dispersal events leading to gene flow occur in a multigene-
rational time frame, greater distance thresholds are used for selecting population pairs in order
to infer landscape resistance to dispersal (Boulanger et al. (2020) ; Savary et al., in correction).

2 Comparing graphs to answer current landscape genetic questions

Embedding landscape predictors and genetic responses in both node and link elements of graphs
of the same nature opens the door to several types of landscape genetic analyses at the node-,
neighbourhood-, link- and boundary-levels (Wagner et Fortin, 2013). Graph comparisons at these
levels could be useful for addressing current issues in landscape genetics (Manel et al., 2003 ; Storfer
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et al., 2010), including i) the complex relationships between landscape structure and genetic structure,
ii) the intricacy of scale effects in landscape genetics and iii) the identification of dispersal barriers
(Figure 8).
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Figure 8 – Joint use of landscape graphs (LG) and genetic graphs (GG) to address landscape genetic questions.
Populations and habitat patches (A, B, C, D) are the same in both types of graph.

2.1 Disentangling the complex relationships between the components of landscape
structure and genetic structure

In landscape genetics, both genetic response and landscape predictors may be i) ’node-level’ va-
riables describing the population or the habitat in isolation or ii) ’neighbourhood-level’ variables
depicting the function of each node given its location in the network by taking into account its links
with other populations or habitat patches (Wagner et Fortin, 2013). Graphs more than any other
objects make it possible to compute both node-level and neighbourhood-level variables to characterise
the different components of landscape structure and genetic structure. In depth assessment of the
links between these variables computed in landscape and genetic graphs provides the opportunity to
disentangle the complex relationships between landscape structure and genetic structure.

Theories derived from population genetics and landscape ecology point to an influence of both
intra-habitat patch features and inter-habitat patch connectivity on genetic structure. The neutral
genetic structure of species occupying habitat patches is the result of both drift (a demographic effect
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driven by patch quality and area) and gene flow ( which depends on inter-patch connectivity). There-
fore, genetic structure can be explained by both intra-patch (node) and inter-patch (link) landscape
predictors computed from landscape graphs. Landscape genetic studies have evidenced the influence of
habitat connectivity on genetic structure more frequently than that of local landscape features (DiLeo
et Wagner (2016), but see Ezard et Travis (2006)), although landscape ecology studies have reported
strong habitat amount effects on a large range of biological responses (Fahrig, 2003, 2017). This is pro-
bably due to the predominance of link-level analyses in landscape genetics (DiLeo et Wagner, 2016).
Besides, assigning to each type of landscape predictor its respective influence on genetic structure can
be complicated by the interdependence between habitat amount and fragmentation (Didham et al.,
2012).

Apart from terminological aspects, it is not easy to identify the respective influence of these spatial
habitat properties. This has triggered heated debates (Fahrig, 2013 ; Fletcher Jr et al., 2018 ; Haddad
et al., 2017 ; Hanski, 2015) in part because the quantification of habitat amount in the landscape
around a sampling site is dependent upon the habitat spatial configuration and fragmentation (Saura,
2021) and because habitat connectivity depends on habitat amount (Saura et Rubio, 2010). Given that
it turns out to be hardly possible to totally isolate these variables, a variable quantifying the Amount
of Reachable Habitat (ARH) could explain how both habitat amount and configuration influence
biodiversity patterns in heterogeneous landscapes (Blazquez-Cabrera et al., 2014 ; Martensen et al.,
2017 ; Villard et Metzger, 2014). Several metrics derived from landscape graphs, such as the delta
variant of the ’Equivalent Connectivity’ (dEC) as well as local metrics such as Flux (F) and Interac-
tion Flux (IF) are examples of such neighbourhood-level local metrics. These metrics make it possible
to vary the weights of both patch capacities (different capacity measures or associated exponents)
and inter-patch distances (different dispersal probability functions) in their calculation, providing a
way to test for the relative influence of local habitat quality and matrix resistance on genetic responses.

The genetic response can also be described at the node- and neighbourhood-level in a genetic
graph to depict both intra- and inter-population genetic structure. Intra-population genetic diversity
has been shown to depend more strongly on habitat amount than on habitat connectivity (Jackson
et Fahrig, 2015), because the former determines population size and drift intensity. Similarly, Brug-
geman et al. (2010) and (Cushman et al., 2012) showed that inter-population genetic differentiation
depended more on habitat configuration than on habitat amount. However, DiLeo et Wagner (2016)
showed that most landscape genetic studies focused on habitat configuration and matrix resistance ef-
fects on genetic differentiation at the link-level whereas intra-population diversity was rarely included
as a response variable. Characterising genetic structure at both the node- and neighbourhood-levels
of a genetic graph could be relevant in that context. Node-level genetic variables include population
specific genetic diversity indices such as allelic richness or heterozygosity rates. Neighbourhood-level
genetic responses are graph-theoretic metrics taking into account node connections with other nodes
(Wagner et Fortin, 2013). For example, Koen et al. (2016) evidenced the linear relationship between
the average genetic distances (and inverse genetic distances) weighting the links connected to a popu-
lation and the simulated connectivity between that population and the others. Hence, although genetic
differentiation is usually assessed between population pairs, neighbourhood-level genetic indices make
it possible to measure genetic differentiation at the population level. Moreover, neighbourhood-level
genetic indices could also estimate local genetic diversity by inspiring from the rationale behind metrics
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quantifying the amount of reachable habitat in landscape graphs. Shirk et Cushman (2011) took the
first step towards computing spatially-explicit genetic diversity indices by considering sampling areas
defined from genetic neighbourhood sizes in their calculations. Taking graph topology into account to
compute genetic diversity indices could be the next step in deriving a metric quantifying the poten-
tial genetic diversity in a population given potential dispersal events from other connected populations.

Once these variables have been computed from landscape and genetic graphs, we end up with
landscape predictors and genetic responses in both cases computed at the node- and neighbourhood-
level. It then remains to integrate these variables in analyses to reach conclusions. In order to compare
different landscape pattern effects on genetic response or different genetic responses to landscape pat-
terns on the same basis, it is important to integrate the relevant variables within a common statistical
framework (Leroux et al., 2017). For that purpose, neighbourhood-level variables derived from graphs
offer the advantage of integrating inter-patch or inter-population distances in the computation of local
metrics. This makes it possible to use models in which statistical individuals are patches or popula-
tions, while considering distances between them. It also saves using widely criticised distance-based
analyses such as Mantel tests (Balkenhol et al., 2009b ; Legendre et Fortin, 2010).

2.2 Assessing scale effects in landscape genetics

Results obtained by comparing landscape and genetic graphs at the node- and neighbourhood-level
will probably depend on the size of the neighbourhood considered, due to so-called scale effects, which
have been shown to be intricate in landscape ecology (Brooks, 2003 ; Jackson et Fahrig, 2012 ; Miguet
et al., 2016) and population genetics (Hutchison et Templeton, 1999).

In landscape graphs, neighbourhood size is embedded in the computation of connectivity metrics
derived from the Probability of Connectivity Index (Saura et Pascual-Hortal, 2007). When calculating
these metrics, paths are computed from each patch in turn, using a specific dispersal kernel to weight
the influence of the surrounding patches. The dispersal kernel is defined by converting the inter-patch
distances (i.e. the cumulated length of the links separating patches) into a dispersal probability, ac-
cording to a function determining the shape of the kernel (usually a negative exponential function).
Identifying the dispersal kernel maximising the strength of the relationship between the connectivity
metric and the genetic response computed from a genetic graph would be another way to identify
the scale of effect of the habitat spatial pattern on genetic structure. Because the genetic variable
computed from the graph at the population level can measure either the genetic diversity or the gene-
tic differentiation (neighbourhood-level), scales of effects influencing these two components of genetic
structure could be compared. This approach also has the advantage of making it possible to integrate
cost-distances in analyses of scales of effects, whereas the use of Euclidean geodesic distances implying
isotropic neighbourhoods has been the norm so far (but see Miguet et al. (2017)).

On the other hand, the way the graphs have been pruned determines which connections are taken
into account in calculating neighbourhood-level variables. Comparing the strength of the relationship
between predictors and response variables derived from landscape and genetic graphs for different
pruning methods can provide insight into the most likely topology of the propagule dispersal events.
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Similarly landscape and genetic graphs can be compared by assessing the relationship between
matrices of graph-based distances separating similar nodes derived from these graphs with methods
and models commonly used in link-based landscape genetic analyses (Mantel correlations, Multiple
Regressions on Distance Matrices, linear mixed models), with varying graph pruning methods. On a
pruned landscape graph, inter-patch distances are computed as the shortest distances along the links
and can be used to test for the likelihood of stepping-stone dispersal models (Saura et al., 2014). In
contrast, in genetic graphs, pruning removes distance values associated with some population pairs
from link-level analyses which could improve the power of link-level analyses, as suggested by Wagner
et Fortin (2013). We also think that pruning a genetic graph could provide insight into the scale at
which genetic differentiation at equilibrium depends both on gene flow and drift, a question long asked
in population genetics (Hardy et Vekemans, 1999 ; Hutchison et Templeton, 1999).

2.3 Identifying barriers in the landscape

Another goal of landscape genetics analyses is to identify landscape barriers isolating groups of
populations from each other (Manel et al., 2003 ; Segelbacher et al., 2010 ; Storfer et al., 2007). Po-
pulations located on each side of these unbridgeable barriers cannot exchange migrants directly. If a
landscape graph successfully represents the habitat network, it should not include links between these
populations, thereby evidencing the absence of connectivity between the habitat patches. When gene-
tic graphs are pruned based on a genetic criterion, such as the conditional independence principle used
in ’population graphs’ (Dyer et Nason, 2004), their topology provides a reference free from any hypo-
thesis regarding landscape feature influence that can be compared to the topology of the landscape
graph to test for its ecological validity. This ’topological congruence’ analysis (Dyer, 2015b) is one
way to identify dispersal barriers and to assess the maximum dispersal capacities of the study species.
When graphs share the same nodes, it basically consists of a comparison of two binary classifications
(presence-absence of links) which can be performed with classification assessment indices (Fletcher
et al., 2011 ; Matthews, 1975).

Landscape and genetic graphs can also be compared through boundary-based analyses in which
link weights are taken into account to quantify the strength of the interaction between groups of
nodes (Wagner et Fortin, 2013). Both types of graphs can be subjected to modularity analyses in
order to define clusters (modules) of nodes within which connections are stronger than with nodes
from other clusters (e.g. Fortuna et al. (2009) ; Foltête et Vuidel (2017)). Two partitions are similar
if two nodes from the same cluster in the partition of a graph are also in the same cluster in the
partition of the other graph. This similarity can be assessed with indices comparing partitions such
as the Adjusted Rand Index (Hubert et Arabie, 1985) or the Normalized Mutual Information (Danon
et al., 2005 ; Reichert et al., 2016). The similarity between the partitions of a landscape graph and a
genetic graph could indicate that the spatial structure of the genetic variation is due to the existence
of barriers resistant to dispersal. It could also validate the identification of significant management
units performed with landscape graphs (Foltête et Vuidel, 2017).

3 Integrating the graphs to benefit from their complementarity

The comparison of these two types of graph is promising and has been poorly exploited so far (but
see Castillo et al. (2016), Creech et al. (2014), Draheim et al. (2016) and Schoville et al. (2018) for
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inspiring approaches). Nevertheless, combining genetic graphs with landscape graphs is useful for more
than just validating landscape graphs ecologically. Genetic graphs usually have few nodes, which limits
the assessment of ecological connectivity whereas landscape graphs consider an exhaustive set of po-
tential habitat patches (Figure 9). Landscape graphs and genetic graphs are thus truly complementary
and connectivity modelling could benefit from a two-way interaction between these tools.

Exhaustive set 
of habitat patches

Potential connectivity
Limited ecological validity

Reduced sample 
of populations

Realised gene flow
Enhanced ecological validity

Landscape graph Genetic graph

Figure 9 – Complementarity between genetic graphs and landscape graphs. Habitat patches in which genetic sampling
occurs are displayed by a white dot on the left panel.

Integrating these graphs could enable predictive analyses in landscape genetic studies, which are
currently very scarce although they could benefit to conservation practitioners (but see Van Strien
et al. (2014)). If robust models linking landscape graph and genetic graph properties are calibrated,
then an extrapolation could indicate the potential role for the genetic connectivity of a large number
of both sampled and non-sampled habitat patches. For example, Creech et al. (2014) extrapolated a
model linking landscape distance and expected gene flow using a graph-theoretical approach in order
to model the differences between gene flow and colonization network topologies due to sex-biased
dispersal in Bighorn sheep.

This integration could go even further through the use of gravity models (Murphy et al., 2010a).
In these models, both intra-patch and inter-patch landscape predictors could be included in the same
framework. Model fit estimates could also assess the relevance of such a model for predictive purposes.
In addition, including estimates of population size in these models could be a way to partial out
the effect of the spatial heterogeneity of population sizes on drift intensities, and thus on genetic
differentiation (Prunier et al., 2017). Gravity models have already been used in landscape genetics
(Murphy et al., 2010a ; Robertson et al., 2018a ; Zero et al., 2017) but they have rarely been combined
with both landscape and genetic graph modelling or used for predictions, although we think this could
reinforce both their ecological relevance and their value for conservation.
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4 Further steps towards a better joint use of landscape and genetic
graphs

Further research is still needed to broaden the potential of the joint use of landscape and genetic
graphs and go beyond current limits in landscape genetic studies. We think that statistical methods
commonly used in graph theory could be applied when analysing genetic graphs or landscape graphs
to overcome statistical limits often pointed out (Balkenhol et al., 2009b). For example, permutation
and randomization methods (Farine et Whitehead, 2015 ; Reichert et al., 2016) should be used more
often to test for the significance of network properties. Besides, recent advances regarding statistical
methods used for graph pruning, whether from genetic data (Greenbaum et al., 2016 ; Kuismin et al.,
2017, 2020 ; Neuditschko et al., 2012 ; Peterson et al., 2019) or landscape data (Fletcher et al., 2011
; Serrano et al., 2009) do not find sufficient applications in both fields although graph pruning is key
to identifying landscape barriers to dispersal.

Finally, connectivity modelling most often assumes symmetrical exchanges between habitat patches
although several works on dispersal reveal their asymmetrical nature (Baguette et al., 2013 ; Bonte
et al., 2012). Directed graphs have rarely been built with neither landscape data nor genetic data
(Holderegger et Gugerli, 2012) but initial attempts to build these types of graphs in these fields ap-
peared useful for understanding source-sink dynamics (Jordán et al., 2007). Further work on this type
of graph should therefore be encouraged.

In conclusion, combining landscape and genetic graphs paves the way for a wide range of analyses
which could both shed light on complex landscape genetic relationships and support decision-making
with empirically grounded arguments.
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Annexe A3

Analysing landscape effects on dispersal networks
and gene flow with genetic graphs

Abstract
Graph-theoretic approaches have relevant applications in landscape genetic analyses. When species form populations in

discrete habitat patches, genetic graphs can be used i) to identify direct dispersal paths followed by propagules or ii) to quan-
tify landscape effects on multi-generational gene flow. However, the influence of their construction parameters remains to be
explored. Using a simulation approach, we constructed genetic graphs using several pruning methods (geographical distance
thresholds, topological constraints, statistical inference) and genetic distances to weight graph links (FST, DPS, Euclidean
genetic distances). We then compared the capacity of these different graphs to i) identify the precise topology of the dispersal
network and ii) to infer landscape resistance to gene flow from the relationship between cost-distances and genetic distances.
Although not always clear-cut, our results showed that methods based on geographical distance thresholds seem to better
identify dispersal networks in most cases. More interestingly, our study demonstrates that a sub-selection of pairwise distances
through graph pruning (thereby reducing the number of data points) can counter-intuitively lead to improved inferences of
landscape effects on dispersal. Finally, we showed that genetic distances such as the DPS or Euclidean genetic distances should
be preferred over the FST for landscape effect inference as they respond faster to landscape changes.

Keywords : landscape genetics, ecological connectivity, graph theory, simulation, dispersal
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1 Introduction

Landscape connectivity is defined as the degree to which the landscape facilitates or impedes mo-
vement among resource patches (Taylor et al., 1993). Such dispersal events reduce metapopulation
extinction risk (Den Boer, 1968 ; Hanski, 1998) and give rise to gene flow, thereby preventing inbree-
ding depression and maintaining local adaptation potential (but see Crispo et al. (2011), Richardson
et al. (2016) and Lenormand (2002)). Therefore, understanding dispersal patterns is crucial for biodi-
versity conservation.

Landscape genetic approaches have been increasingly used to assess landscape influence on disper-
sal (Balkenhol et al., 2016 ; Dyer, 2015a ; Manel et al., 2003 ; Storfer et al., 2007) because genetic data
based inferences provide insights into effective movements that led to reproduction when inferences
drawn from mark-recapture data or GPS tracks mostly identify current movements (Mateo-Sánchez
et al., 2015 ; Zeller et al., 2018). Although advances have been achieved in landscape genetics in the
last 15 years (Manel et Holderegger, 2013 ; Storfer et al., 2010), there are still methodological and
theoretical challenges, to analysing and interpreting genetic data especially (Balkenhol et al., 2009a,b
; Dyer, 2015a).

Graph-theoretic approaches are particularly relevant when dispersal events occur between patchy
populations forming a network (Greenbaum et Fefferman, 2017). A genetic graph is made of i) a set of
nodes corresponding to gene pools sampled from different sites, and ii) a set of links connecting them
through gene flow. The graph is basically a pairwise adjacency matrix with 0 and 1 reflecting absence
or presence of links between populations, but the links can also be weighted by measures of genetic
differentiation. In this case, it is often recommended to prune the complete graph, in other words to
remove links between some node pairs, e.g. indirectly connected through intermediate nodes, to make
the topology easier to visualise and to keep only the most relevant links in light of the study aim.

Genetic graphs are flexible tools that can be used in multiple fashions in landscape genetic stu-
dies, offering a great potential for inferring models of network flow (Murphy et al., 2016). Indeed,
a certain level of gene flow between two populations can result from direct exchanges of propagules
and/or indirect exchanges through intervening populations in a stepwise way over several generations.
Although considering only the genetic distance between two populations does not indicate whether
gene flow occurred in a direct or indirect way, estimating genetic differentiation between a population
pair conditionally upon other populations should make it possible to disentangle direct versus indirect
gene flow between them (Dyer, 2015b). Hence, using the conditional independence principle (Mag-
wene, 2001 ; Whittaker, 2009) can be a way to identify the precise topology of the dispersal network
(i.e. the set of links depicting dispersal of propagules between populations), in other words identifying
the set of edges that represents contributing connections among nodes (Murphy et al., 2016).

Alternatively, a genetic graph can be used for quantifying landscape feature resistance to gene flow
through distance-based analyses (Garroway et al., 2011). Assessing the correlation between genetic
distances and geographical or effective landscape distances is a way to identify the hypothesis that
best fits the genetic data, and thus reflects landscape influence on gene flow, among several hypo-
theses of landscape feature resistance (Cushman et al., 2006 ; Khimoun et al., 2017 ; Peterman, 2018
; Ruiz-Gonzalez et al., 2015). Although such inferences are usually based upon complete matrices of
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distance, several authors have suggested that reducing these matrices to a subset of population pairs
may improve their robustness (Van Strien et al., 2015 ; Van Strien, 2017 ; Wagner et Fortin, 2013
; Zeller et al., 2016). Graph pruning precisely involves selecting a subset of population pairs which
therefore makes genetic graphs particularly relevant in this context.

Reducing the dataset by removing population pairs in order to improve inferences of landscape
resistance is somehow counter-intuitive, but it lies on the following rationale. Assuming that dispersal
is generally spatially limited, several theoretical models of populations genetics predict that measures
of genetic differentiation are linearly and positively correlated with geographical distance, provided
enough time has elapsed for this equilibrium pattern to become established (Guillot et al., 2009 ;
Kimura et Weiss, 1964 ; Slatkin, 1993 ; Wright, 1943). Models also predict that the spatial scale over
which this pattern of Isolation by Distance (IBD) has reached its stationary state should increase
with time following the establishment of populations (Slatkin, 1993). In other words, before complete
equilibrium has been reached, IBD is only observed between nearby populations but not between
more distant ones. Note that all these models assume that the landscape exerts an homogeneous effect
on dispersal, and most of them exclude spatial variation in population density (Guillot et al., 2009).
However, most real landscapes are heterogeneous, and a common way to consider landscape feature
suitability for dispersal is to replace Euclidean distances by landscape distances (e.g. cost-distances
or resistance distances) in the analysis of population genetic structure (Balkenhol et al., 2016 ; Cou-
lon et al., 2004 ; Peterman, 2018). If the isolation by landscape resistance (IBLR) model extends
the IBD model in heterogeneous landscapes, its theoretical expectations have been less strongly in-
vestigated. Nevertheless, a model developed by McRae (2006) predicts a linear positive relationship
between genetic differentiation and landscape distances. Here again, some time is needed for patterns
of differentiation to reflect the influence of landscape features on dispersal, and model assumptions
are more likely to be verified at shorter landscape distances before the complete equilibrium has been
reached (McRae, 2006). Hence, better inferences of landscape resistance to gene flow may be obtained
when selecting the subset of populations pairs that are within a certain spatial distance. This issue
is critical as landscape genetic studies are frequently performed in human-shaped landscapes which
have undergone recent modifications potentially affecting demography (Manel et Holderegger, 2013 ;
Storfer et al., 2010), but the relevance of the different graph pruning methods in this context has been
rarely investigated.

In this study, we used a simulation approach to compare the relative efficiency of several graph pru-
ning methods, genetic distances and analysis parameters of a genetic graph regarding two objectives
in inferring network flow : i) identifying the precise topology of the dispersal network and ii) assessing
the capacity of landscape distances to predict genetic distances. First, we assessed the efficiency of
three kinds of criteria used for excluding graph links : geographical distance thresholds (leading to
the exclusion of links corresponding to geographical distances larger than a threshold value), topology
(involving topological constraints in graph pruning), and statistical inference of conditional indepen-
dence based on genetic data (Dyer et Nason, 2004). Second, we compared some of the numerous genetic
distances used to weight graph links (Murphy et al., 2016) : FST (Keller et al., 2013 ; Munwes et al.,
2010), DPS (Naujokaitis-Lewis et al., 2013 ; Keller et al., 2013), genetic Euclidean distance (Excoffier
et al., 1992). Finally, we compared two common practices in distance-based analyses. The first one
relies on the correlation between genetic and landscape distances corresponding with population pairs
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that are directly connected in the genetic graph. The second one is based on the same correlation,
but considering all pairwise genetic distances (between population pairs directly connected or not),
by summing genetic distances along the shortest direct or indirect path between these populations
on the graph. Dyer et al. (2010) revealed a higher correlation of this conditional genetic distance
(cGD) than pairwise FST with landscape distance. Yet, these two matrices (cGD vs complete FST

matrix) involved two different genetic distances (Euclidean genetic distance and FST) and two kinds
of links (paths made of direct dispersal paths only vs direct plus indirect paths) at the same time,
thereby introducing a confounding factor in the comparison. Therefore, the ability of these practices
in distance-based analyses to infer landscape effects on dispersal still needs investigation.

2 Material & Methods

2.1 Landscape data

We simulated 10 landscapes using spatially correlated Gaussian random fields models (autocorre-
lation range : 10)(Schlather et al., 2015) with NLMR package in R (Sciaini et al., 2018). Land cover
proportions were close to those encountered in agricultural landscapes dominated by crops and grass-
lands with small remaining forest fragments. Cost values were assigned to five cover types to simulate
the dispersal capacities of a forest specialist species. These cost values and land cover proportions were
the following : crops (cost : 60, proportion : 35 %), grassland (40, 35 %), forest (1, 15 %), shrubland (5,
7.5 %) and artificial areas (1000, 7.5 %). We based these costs on values already employed to analyse
ecological connectivity in forest species (Gurrutxaga et al., 2010 ; Schadt et al., 2002), and their range
(1-1000) matches that inferred from field data in other empirical studies on a wide range of taxa with
contrasted dispersal capacities (Khimoun et al., 2017 ; Pérez-Espona et al., 2008 ; Ruiz-González et al.,
2014 ; Wang et al., 2008).

The resulting landscapes were square raster grids of 3600 square kilometres with a resolution
of 100 m. We randomly selected 50 population locations within the forest patches, separated by a
distance larger than 3 km from one another. Ten population location distributions were created for
each landscape in order to vary the cost-distance value distribution. Each population contained 30
individuals during the simulation.

2.2 Gene flow simulation

We used cdpop (Landguth et Cushman, 2010) to simulate gene flow. Population size and sex-ratio
(equal to 1) remained constant throughout the simulation of 500 generations. At each generation, in-
dividuals mate in their own population and juveniles may disperse to establish in other populations.
The number of offspring per female follows a Poisson distribution (λ = 3). Once every population
is occupied by 30 native or dispersing individuals, following individuals immigrating die. Mating is
done with replacement for males only, and generations are non-overlapping. Individual genotypes were
simulated for 20 loci with 30 alleles per locus, thereby emulating the frequent use of microsatellites in
landscape genetic studies (Storfer et al., 2010). Initial genotypes were assigned randomly at generation
0 as starting allele frequencies do not affect the overall final pattern of genetic differentiation (Graves
et al., 2013). There was no selection but mutations could occur (k-alleles mutation model, µ = 0.0005).
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Gene flow depended on simulated landscape resistance. With respect to the second objective, i.e.
assessing the capacity of landscape distances to predict genetic distances, we aimed at simulating
contrasted patterns of genetic structure in terms of spatial scale at which IBLR was observed. We first
explored several simulation settings before retaining the following one. For every 100 combinations
of landscape and distribution of populations, a landscape graph with 50 nodes was built. Each node
corresponded to a habitat patch occupied by one population. Cost-distances (CD) between habitat
patches were calculated following Adriaensen et al. (2003) as the accumulated cost along the least-cost
path between each pair of habitat patches, using Dijkstra’s algorithm on Graphab software (Foltête
et al., 2012a). Then, these CD values were used to weight the links of the graph, which initially had
a complete topology. Using the edge-thinning method (Urban et Keitt, 2001), we removed links one
by one in descending order of CD until we identified the link whose removal would have disconnec-
ted the graph into two components. The CD associated to this link was the "percolation threshold"
(Rozenfeld et al., 2008). During gene flow simulations, dispersal probabilities associated with links
whose CD values were above 1.1 × percolation.threshold were set to 0. 1.1 × percolation.threshold
is therefore the maximum dispersal distance. The resulting population networks were made of the set
of direct dispersal paths which could possibly be followed by individuals and thus represented the
potential dispersal network. It had a single component, thereby preventing single populations from
being totally isolated, which is theoretically necessary for populations to survive (Allendorf et al., 2007
; Frankham et al., 2004).

The decrease of individual dispersal probability according to CD was modeled by a negative ex-
ponential function (Clobert et al., 2012 ; Hanski et al., 2000 ; Urban et Keitt, 2001), such that :
p(CD) = e−βCD. β values were calculated such that the CD associated with a dispersal probability of
0.01 was equivalent to 5 % of the percolation threshold. Preliminary tests revealed that these settings
resulted in proportions of migrants akin to those empirically described by Bowne et Bowers (2004).

For each simulation scenario (i.e. combination of landscape and distribution of populations), gene
flow was simulated 10 times (1000 simulations in total). We used genotypes from generations 50 and
500 to construct genetic graphs. After each simulation, a "realised dispersal graph" was built. Its links
were all the links that had been followed by at least one individual during the simulation. Genetic
graphs built in order to recover the topology of the dispersal network were supposed to reproduce the
topology of this realised dispersal graph.

2.3 Genetic graphs

We constructed genetic graphs using several pruning methods and genetic distances to weight the
links (see table 1 for the list of combinations).

2.3.1 Pruning method

We pruned the genetic graphs using nine pruning methods based upon three criteria : i) geogra-
phical distance thresholds, ii) topology and iii) statistical inference.

First, we pruned graphs by removing all the links between nodes separated by a geographical dis-
tance larger than a given threshold. We used 4 thresholds : 10, 15, 20 and 30 km (GEO-10, GEO-15,
GEO-20 and GEO-30, respectively). We chose this range of values to keep most graphs connected
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(Naujokaitis-Lewis et al., 2013) and because above 30 km, the resulting graphs were complete graphs
given the size of the landscapes. We used thresholds in geographical distance units instead of cost-
distance units because in practice researchers are not supposed to have previous knowledge of cost
values associated with land cover types.

The second pruning criterion aimed at constructing graphs with a specific topology, in agreement
with the species dispersal pattern hypothesised a priori. Genetic graphs were first given the topology
of a Gabriel graph (GAB)(Arnaud, 2003). This type of graph in which only neighbouring populations
are connected assumes a stepping-stones migration model. We also created minimum spanning trees
(MST)(Naujokaitis-Lewis et al., 2013) as they reflect the "backbone" of the dispersal network (Bunn
et al., 2000). Here again, we assumed that cost values of landscape features are unknown and GAB
and MST connections were computed based on geographical distances as in Arnaud (2003) and Keller
et al. (2013).

Third, graph pruning was based on a statistical procedure selecting the minimal set of links ex-
plaining population genetic structure. Based upon the conditional independence principle (Magwene,
2001 ; Whittaker, 2009), it is supposed to select links corresponding with direct dispersal paths and
discard links associated with genetic similarities due to stepping-stones dispersal. We used the original
method of Dyer et Nason (2004) but we also modified some of the calculation steps implemented in
the popgraph package (cf. section C of supporting information). This method involves the calculation
of a genetic covariance matrix from a genetic distance matrix that must have Euclidean properties,
following Gower (1966). Therefore, we used a PCA-derived Euclidean genetic distance as well as the
Euclidean genetic distance computed by default when using the popgraph package. From a strict
mathematical point of view, the formula used to calculate the covariance cij from the distance dij
between populations i and j is the following : cij = −1

2 × (d2
ij − d2

i• − d2
•j + d2

••) (Everitt et Ho-
thorn, 2011 ; Smouse et Peakall, 1999), although the formula implemented in popgraph package is :
cij = −1

2 × (dij − di• − d•j + d••) (Dyer et Nason, 2004)(di• and d•j correspond respectively to the
sum of distances over a column/row of the distance matrix). In our modified version (CI), we used the
former formula while we also implemented the latter for comparative purposes (CI2). We also added a
p-value adjustment, following sequential Bonferroni procedure (Holm, 1979), to limit type-I errors. In
sum, we constructed genetic independence graphs relying upon the conditional independence principle
using either our modified method (CI) or the original method of Dyer et Nason (2004) (CI2), with
either PCA-derived Euclidean distance (PCA, cf section C of supporting information) or popgraph
derived Euclidean genetic distance (PG), and either adjusting (ADJ) p-values or not (Table 1).

Finally, we constructed complete genetic graphs (COMP) because graph topologies sometimes
include all the potential links between nodes (Naujokaitis-Lewis et al., 2013). Besides, these complete
graphs constituted a baseline to assess the relevance of graph pruning.

2.3.2 Genetic distance

Four genetic distances were used to weight the graph links. First, we used the linearised FST (i.e.
FST/(1-FST)), hereafter noted FST (Rousset, 1997). Second, we also used the "inter-population ver-
sion" of DPS (DPS), a genetic distance based on the dissimilarities of population allele pools computed
as 1 - the proportion of shared alleles (Bowcock et al. (1994), cf. section D of supporting information).
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This commonly used genetic distance is supposed to reflect recent gene flow changes (Murphy et al.,
2010b, 2016 ; Naujokaitis-Lewis et al., 2013). Third, we computed a Euclidean genetic distance by first
performing a PCA of the matrix of allelic frequencies and then computing the Euclidean distance bet-
ween populations in the space defined by all independent principal components to derive a PCA-based
Euclidean genetic distance (PCA), following Paschou et al. (2014) and Shirk et al. (2017a). Finally,
we used the Euclidean genetic distance computed by default in popgraph package (PG).

Genetic independence graph links were weighted only with the two Euclidean genetic distances.
The links of the other genetic graphs were weighted using the FST, the DPS and the PCA-derived
genetic distance. Every genetic distance, including that computed with the original popgraph method,
was used to weight the links of the complete graphs in order to provide a baseline for the comparison
of all pruning methods. In sum, 30 genetic graphs were constructed at generations 50 and 500 for
every simulation (Table 1).

2.4 Graphs analyses

The dispersal pattern of the simulated species is reflected by the realised dispersal graph topology,
and simulated gene flow was driven by the cost-distance values between populations. Hence, a genetic
graph can be considered accurate if i) its topology reflects well the direct paths of the realised dispersal
graph or if ii) the genetic distances derived from its links are highly correlated to the cost-distance
values between populations.

2.4.1 Topology similarity analyses

We assessed the topological similarity between realised dispersal graphs and genetic graphs. To
that purpose, we created contingency tables classifying the potential links of both types of graphs into
two categories : absence or presence (see Fletcher et al. (2011)). Then, we calculated the Matthews
correlation coefficient (Matthews, 1975), considered as a reliable index of binary classification quality
because it takes into account all the elements of the contingency table and is calculated with respect
to a random baseline (Baldi et al., 2000). A Matthews correlation coefficient of 1 is reached when both
graphs are identical, whereas a 0 value means that they are no more similar than if they were built
by selecting links randomly. In our case, a large value indicates that a genetic graph recovers well the
realised dispersal graph topology.

2.4.2 Distance-based analyses

We calculated the Mantel correlation coefficients r (Mantel, 1967) between genetic distances and
CD values. For each simulated genetic dataset, we considered three sets of genetic distances : i) the
subset of "raw" genetic distances associated with population pairs directly connected in genetic graphs
(see Van Strien et al. (2015)), ii) the graph-based genetic distances between every population pair,
calculated as the sum of link weights along the shortest path between nodes (an extended use of the
"cGD" introduced by (Dyer et al., 2010) to other types of genetic graphs) and iii) the full set of "raw"
genetic distances between every population pair derived from complete graphs. Large r values indicate
that the set of genetic distances derived from genetic graphs reflects well the simulated landscape
effects on gene flow. This approach is commonly used in landscape genetics (Graves et al., 2013 ; Shirk
et al., 2017b ; Van Strien et al., 2015 ; Zeller et al., 2016) as the use of Mantel correlation coefficients is
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relevant when the hypothesis can only be formulated in terms of distances (Legendre et Fortin, 2010).
We focused on the correlation coefficient values rather than on statistical significance because it has
been shown to provide reliable results when few hypotheses are compared (Shirk et al., 2017b ; Zeller
et al., 2016). Besides, type-I error rate is high with Mantel tests (Balkenhol et al., 2009b), which limits
their relevance.

2.5 Simulation results ordination

We performed a large number of simulations by varying landscapes and population locations. Given
our objectives, we intended to reproduce in our simulations the cases I and IV from the hypothetical
classification of the relationship between genetic and geographical distances proposed by Hutchison
et Templeton (1999). Although case I corresponds to an equilibrium between gene flow and drift over
the whole region, case IV corresponds to a transient situation where this equilibrium has been reached
at a smaller spatial scale because of the time lag of the genetic response. The case I is characterised
by a linear increase of genetic differentiation with increasing geographical distances over the whole
region considered. In contrast, the case IV depicts this positive correlation up to a certain geographical
distance threshold above which the relationship flattens out. This distance threshold was defined by
Van Strien et al. (2015) as the distance of maximum correlation (DMC), i.e. the geographical distance
threshold below which the subset of population pairs maximises the linear correlation between genetic
and geographical distances. The highest DMC occurs for case-I patterns of IBD as it should be equal
to the maximum inter-population distance whereas it decreases when case-IV patterns of IBD are
observed. Thereby, we used the DMC as a proxy of the spatial scale above which equilibrium has not
been reached, and below which genetic structure depends both on gene flow and drift, which does not
necessarily mean that equilibrium has been reached. Considering the linear positive relationship bet-
ween genetic differentiation and landscape distances expected under an IBLR model (McRae, 2006),
we aimed at reproducing the cases I and IV defined by Hutchinson and Templeton but considering
cost-distances instead of geographic distances.

We determined the DMC by iteratively computing the Mantel correlation coefficients between i)
the CD values driving the simulation and ii) the FST and the DPS, using increasing threshold values.
We also visualised scatter plots of the relationship between genetic distances and CD to identify the
type of IBLR pattern corresponding to each simulation and time step. We could thus check for po-
tential biases in Mantel r values. Most graph analyses were performed using graph4lg package in R
(Savary et al., 2021b).

To extract the main trend among the results of 1000 simulations, we applied a Principal Com-
ponent Analysis to eight variables describing the simulation parameters (proportion of migrants per
population, CD threshold used to build the potential dispersal graph, number of links in the realised
dispersal graph, mean CD covered by migrants) and their genetic output (DMC computed at genera-
tion 50 and 500 for FST and DPS). These variables were averaged over the 10 runs for each configuration
combining a landscape and a population spatial distribution. We carried out a hierarchical clustering
from the PCA factors in order to distinguish the main trend in the PCA results.
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Graph name Pruning method Genetic distance
COMP-FST No pruning FST
COMP-DPS No pruning DPS
COMP-PCA No pruning PCA-derived Eucl. dist.
COMP-PG No pruning Eucl. gen. dist. (from popgraph)
GEO-10-FST Geo. dist. threshold (10-km) FST
GEO-10-DPS Geo. dist. threshold (10-km) DPS
GEO-10-PCA Geo. dist. threshold (10-km) PCA-derived Eucl. dist.
GEO-15-FST Geo. dist. threshold (15-km) FST
GEO-15-DPS Geo. dist. threshold (15-km) DPS
GEO-15-PCA Geo. dist. threshold (15-km) PCA-derived Eucl. dist.
GEO-20-FST Geo. dist. threshold (20-km) FST
GEO-20-DPS Geo. dist. threshold (20-km) DPS
GEO-20-PCA Geo. dist. threshold (20-km) PCA-derived Eucl. dist.
GEO-30-FST Geo. dist. threshold (30-km) FST
GEO-30-DPS Geo. dist. threshold (30-km) DPS
GEO-30-PCA Geo. dist. threshold (30-km) PCA-derived Eucl. dist.
GAB-FST Topological (Gabriel graph, geo. dist.) FST
GAB-DPS Topological (Gabriel graph, geo. dist.) DPS
GAB-PCA Topological (Gabriel graph, geo. dist.) PCA-derived Eucl. dist.
MST-FST Topological (MST, geo. dist.) FST
MST-DPS Topological (MST, geo. dist.) DPS
MST-PCA Topological (MST, geo. dist.) PCA-derived dist.
CI-PCA Condit. indep. PCA-derived Eucl. dist. (covar. from

squared dist.)
CI-ADJ-PCA Condit. indep. PCA-derived Eucl. dist. (covar. from

squared dist.) with Holm-Bonferroni
adjustment

CI-PG Condit. indep. Eucl. gen. dist. (from popgraph, covar.
from squared dist.)

CI-ADJ-PG Condit. indep. Eucl. gen. dist. (from popgraph, co-
var. from squared dist.) with Holm-
Bonferroni adjustment

CI2-PCA Condit. indep. PCA-derived Eucl. dist. (covar. from
dist.)

CI2-ADJ-PCA Condit. indep. PCA-derived Eucl. dist. (covar. from
dist.) with Holm-Bonferroni adjust-
ment

CI2-PG Condit. indep. Original popgraph method
CI2-ADJ-PG Condit. indep. Original popgraph method with Holm-

Bonferroni adjustment

Table 1 – Genetic graph construction parameters. Cf. section B of supporting information for a glossary of the
acronyms
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3 Results

3.1 Simulation results

For each simulation, the realised dispersal graph was connected meaning that each population
exchanged migrants with at least another population during the first 50 generations. The overall pro-
portion of dispersing individuals over 500 generations ranged from 13.3 % to 24.1 %. Although all
the landscapes were simulated with the same parameters and populations were located randomly in
habitat patches, values of the maximum dispersal distance exhibited substantial variations (from 1321
to 3564 CD units). Consequently, the number of links in dispersal graphs ranged from 155 to 858 links
(Figure 10), depicting a wide range of gene flow patterns.

0 10 20  km

A B

D

Simulated land use (cost values)

Simulated populations

Dispersal graph's links

C

Mean CD: 627, Max. disp. dist.: 1554

Nb of links: 155

Mean CD: 694, Max. disp. dist.: 2098

Nb of links: 198

Mean CD: 724, Max. disp. dist.: 2306

Nb of links: 280

Mean CD: 948, Max. disp. dist.: 3041

Nb of links: 393

Forest (1)

Shrubland (5)

Crop (60)

Grassland (40)

Artificial (1000)

Figure 10 – Four contrasted landscape/distribution of populations configurations exhibiting large differences in the
number of links in the dispersal graph. Mean CD between populations, maximum dispersal distance in CD units and

number of links followed by individuals are indicated in each landscape.

Although a case-IV pattern of IBLR was often observed at generation 50 (Figure 12), DMC values
increased from generation 50 to 500 suggesting that genetic structure reached its stationary state
at increasing spatial scale over time. Note that DMC values were always larger than the maximum
CD over which dispersal was possible. PCA results evidenced these variations (Figure 11). The first
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principal component (56.6 % of the variance) was positively correlated with the DMC (based on FST

and DPS values at generation 50 in particular), the maximum CD threshold, the number of links in
the realised dispersal graph and to a lesser extent with the mean CD covered by individuals and the
proportion of migrants. The second principal component explained a lower proportion of variance (24.9
%) and mainly reflected differences between simulations due to the interplay between the number of
links, the proportion of dispersing individuals (negatively correlated) and the mean CD covered by
dispersing individuals (positively correlated).

Three main clusters of landscape/distribution of populations configurations were identified through
the hierarchical clustering of the PCA results (Figure 11). The first cluster is characterised by low
numbers of links in dispersal graphs because of low maximum dispersal distances and by low DMC
at generation 50 while the third cluster is characterised by high DMC, high numbers of links and
high maximum dispersal distance. In the second cluster, dispersal graphs counted many links, the
proportions of migrants were high and the DMC took intermediate values.

Figure 11 – Principal Components Analysis of eight variables (100 observations) describing the simulation results.
Configurations A to D are also displayed in figure 10.

The first and third clusters included configurations in which case-IV and case-I patterns of IBLR
take form at generation 50, respectively. One objective of this study was to compare the usefulness
of genetic graphs when gene flow influences genetic structure at the complete landscape scale (case I)
or at smaller scale (case IV). In addition, the relative performance of graph construction and analysis
methods exhibited marginal variation along the second principal component. Thus, for the sake of
brevity, we chose to describe the results of the subsequent analyses based on four configurations (A,
B, C, D ; displayed on the figures 10, 12 and 11) along the first principal component which defines
a gradient between these two opposite patterns. Configuration A was typical of a case-IV pattern of
IBLR (at generation 50 in particular) and D of a case-I pattern (Figure 12). Configurations B and C
corresponded to intermediate situations.
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Figure 12 – Scatter plots of the genetic distance (DPS) plotted against cost-distance at generation 50. Cases A to D
illustrate the gradient of IBD patterns (from type-IV to type-I). Solid vertical lines indicate the maximum dispersal

distance, dashed lines indicate the DMC. See figure A1 for the same figure with the FST.

3.2 Genetic graphs

3.2.1 Topology similarity analyses

Depending on the pruning method used, the mean number of links in the genetic graphs was highly
variable as it ranged from 49 (MST) to 802 (GEO-30)(Table 2 and figure A3). In contrast, the number
of links in the realised dispersal graphs, which genetic graph topologies were supposed to reproduce,
were 155, 198, 280 and 393 in the configurations A to D, respectively.

When the graphs were pruned with methods based on geographical distance thresholds or on topo-
logical constraints, their number of links was stable over generations given these methods do not rely
on genetic data. The number of links of MST and Gabriel graphs (49 and around 90 links, respecti-
vely) was also highly stable among configurations and much lower than the number of links in realised
dispersal graphs (Table 2). As a consequence, these topological pruning methods never performed well
in reflecting realised dispersal graph topology (correlation values from 0.29 to 0.54 ; Table 2).
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On the contrary, as pruning based on conditional independence takes into account genetic data,
the number of links in the genetic independence graphs varied strongly, from 58.5 to 519.7 in average.
The number of links in these graphs tended to increase from generation 50 to generation 500 even if
the number of realised direct dispersal paths was stable, but this trend was much lower when using
genetic distances (CI2), as in the original popgraph method, than squared genetic distances (CI),
as in our modified version. As a consequence, the ability of a genetic graph topology to reflect the
topology of the realised dispersal graph was fairly stable between generations G50 and G500 when
using genetic distances (CI2), whereas it decreases between G50 and G500 when using squared genetic
distances (CI ; Table 2). Adjusting the p-values to assess the significance of the partial correlations
almost reduced the number of links by a factor of 2. When the covariance between allelic frequencies
was calculated using squared genetic distances (CI), the number of links was consistently larger than
when using genetic distances (CI2). In some cases, graphs obtained using the latter formula were not
connected, especially when p-values were adjusted to assess the significance of partial correlation values.

Genetic graphs pruned with geographical distance thresholds presented the topology closest to that
of realised dispersal graphs in all configurations (correlation values above 0.6) except the least connec-
ted one (i.e. configuration A)(Table 2). The closest the geographical distance threshold (GEO) from
the maximum dispersal distance (CD threshold converted into Euclidean distance) used in the simu-
lations, the better the genetic graph reflects the topology of the realised dispersal graph. In contrast,
for the dispersal graphs created in configuration A, which counted fewer links (Figure A3), the highest
correlation values were reached with pruning methods based on conditional independence. Correlation
values above 0.6 were reached every time covariance was computed from genetic distances (CI2), and
only at generation 50 with p-value adjustment when covariance was computed from squared genetic
distances (CI) with our modified method. For the configuration B, correlation values above 0.6 were
also reached when independence genetic graphs were pruned by computing the covariance from genetic
distances (CI2) whatever the type of genetic distance used (PCA or PG). For the configuration C,
the original popgraph method (CI2-PG) enabled to reach a correlation value of 0.6. Note that when
computing the covariance from squared genetic distances (CI), the genetic graphs included links bet-
ween population pairs not connected in the dispersal graph (Figure A3). p-value adjustment reduced
the number of these false long-distance links.

Overall, genetic graphs which succeeded in accurately reproducing the topology of the realised
dispersal graphs counted much the same number of links as the dispersal graph (Table 2). However,
this condition is not sufficient to explain the correlation values given that in some cases, relatively low
correlation values were obtained with a similar number of links to the realised dispersal graph (e.g.
CI-ADJ-PG, configuration A at G500 : Matthews correlation coefficient = 0.52, with a difference in
the number of links between graphs equal to 2.4 ; Table 2).

3.2.2 Distance-based analyses

The correlation coefficients between genetic distances and CD separating population pairs which
were directly connected in the genetic graphs were highly variable as they ranged from 0.47 to 0.86
in average at generation 50 (Figure 13, see figure A4 for generation 500). In all cases, Mantel correla-
tion coefficients between genetic distances and geographical distances were lower than those between
genetic distances and CD, showing that the isolation by landscape resistance model better explained
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genetic structure than the isolation by distance model did, as expected from our simulations.

0.77
0.81

0.68
0.72

0.77 0.78

0.65
0.7

0.8 0.8
0.75 0.78

0.79
0.75

0.69 0.72

0.77
0.81

0.73

0.77
0.81

0.73

0.760.730.76

0.630.66
0.59

0.77
0.82

0.72

0.77
0.82

0.72

0.780.790.76

0.650.68
0.6

0.74
0.8

0.69

0.77
0.84

0.72

0.77
0.81

0.74

0.66
0.73

0.61

0.760.730.74

0.80.810.79

0.67

0.57

0.68

0.710.690.71

0.79
0.83

0.76

0.820.84
0.8

0.820.790.82

0.70.71
0.66

0.830.86

0.82
0.86

0.840.86

0.8 0.78

0.81
0.77

0.79 0.8

*

0.82
0.78

*

0.79

0.69

*

0.72

0.63

*

0.690.67

*

0.710.69

*

0.67

0.57

*

0.56
0.5

* *

0.6 0.58

* *

0.610.59

* *

0.55
0.47

* *

COMP GEO−15 GEO−20 GEO−30 MST GAB CI CI−ADJ CI2 CI2−ADJ

A

B

C

D

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
an

te
l c

or
re

lat
io

n'
s c

oe
ffi

cie
nt

 b
et

we
en

 c
os

t d
ist

an
ce

 a
nd

 g
en

et
ic 

di
st

an
ce

Genetic distance             FST         DPS         PCA         PG

Figure 13 – Mantel correlation between genetic distances and cost-distances separating nodes directly connected on
the genetic graphs, according to the type of genetic distance and the pruning method at generation 50 (see table 1 for
the graph names). Mean ± SD values were computed for the 10 runs simulated in each scenario. Blue bars refer to the
correlation coefficient between genetic distance and geographical distance, when it is above 0.3. Black bars refer to the

correlation coefficient obtained using every population pair to compute the correlation. When black and blue bars
overlap, the bar is black. Stars indicate graphs counting several components. The dashed line indicates the maximum r

value obtained for each configuration.

When a case-I pattern of IBLR was observed at generation 50 (configurations C and D), larger
correlation coefficients were always those obtained when using genetic distance matrices derived from
complete graphs instead of pruned graphs, except for genetic independence graphs built with our
modified method (CI). Conversely, when a case-IV pattern of IBLR was observed at generation 50
(configurations A and B), correlation coefficients were almost always larger when genetic distance va-
lues were those associated with the links of a pruned graph, whatever the pruning method, than when
they were associated with all population pairs (Figure 13). At generation 500, there were few diffe-
rences between configurations (A to D) given that the relationship between genetic differentiation and
cost-distance almost linearised over time in all cases, and higher correlation between genetic distances
and CD were observed with a complete graph, compared with a pruned graph, except for genetic
independence graphs based on squared genetic distance (CI) which still performed better (Figure A4).

The largest correlation coefficients were always reached when selecting genetic distance values from
genetic independence graphs built without p-value adjustment and based on the computation of the
covariance from squared genetic distances (CI). When computing covariance from genetic distances
(CI2), as in the original popgraph method, correlation coefficients were much lower. This method
never strengthened the correlation obtained with the corresponding complete genetic distance ma-
trices (COMP-PG or COMP-PCA), and it provided the lowest correlation values (Figure 13). For
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configurations A and B (case IV), correlation coefficients obtained when selecting population pairs
from a Gabriel graph were slightly larger than correlation obtained selecting population pairs from an
MST or by using geographical distance thresholds (Figure 13). In most cases, correlation coefficients
between genetic distances and CD were lower when the genetic distance was the FST rather than the
DPS or Euclidean genetic distances.

When we computed the Mantel correlations between CD and graph-based genetic distances, cor-
relation coefficients values ranged from 0.57 to 0.93 at generation 50 (Figure 14, see figure A5 for a
similar variation at G500). However, differences between configurations were less pronounced when
analysing the correlation this way, even at generation 50.
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Figure 14 – Mantel correlation between conditional genetic distances and cost-distances separating nodes on the
genetic graphs, according to the type of genetic distance and the pruning method at generation 50 (see table 1 for the
graph names). Mean ±SD values were computed for the 10 runs simulated in each scenario. Blue bars refer to the

correlation coefficient between genetic distance and geographical distance, when it is above 0.5. Black bars refer to the
correlation coefficient obtained using every population pair to compute the correlation. When black and blue bars

overlap, the bar is black. Stars indicate graphs counting regularly several components. The dashed line indicates the
maximum r value obtained for each configuration.

The correlation coefficient took its largest values when the graphs were pruned using a geogra-
phical distance threshold or a topological constraint. However, when computing graph-based genetic
distances from these graphs, the correlation coefficients between these genetic distances and geogra-
phical distances were higher than those computed between the same genetic distances and CD values,
supporting an IBD model over an IBLR model despite our simulation settings. The only exception
was when this distance was computed from FST values (Figure 14).

Conversely, when computing graph-based genetic distances from independence graphs, these dis-
tances were more correlated to CD than to geographical distances (Figure 14). The correlation co-
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efficients were higher in that case when the pruning relied on the calculation of the covariance from
genetic distances (CI2) rather than from squared genetic distances (CI). However, the correlation
between Euclidean genetic distances and CD was higher when considering the complete graph ins-
tead of graph-based genetic distances, except when computing covariance from PCA-based genetic
distances (CI2-PCA). Besides, we reproduced the result described by Dyer et al. (2010) who showed
that landscape influence on gene flow was frequently better recovered when using these graph-based
genetic distances derived from independence graphs (CI2) than when using the complete matrix of
FST. Moreover, scatter plots created using graph-based genetic distance values revealed that summing
genetic distances in case-IV pattern of IBLR tends to mask the fact that the relationship between
genetic differentiation and CD flattens out beyond a CD threshold (Figure A2).
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Combination A B C D
a) Dispersal graphs
Max. disp. dist. 1554 2098 2306 3041
Max.disp.dist.(km) 13.1 15.1 18.2 20.8
Nb. disp. paths 155 198 280 393
b) Number of links
Generation G50 G500 G50 G500 G50 G500 G50 G500
GEO-10 127.0 127.0 120.0 120.0 120.0* 120.0* 112.0* 112.0*
GEO-15 274.0 274.0 237.0 237.0 253.0 253.0 246.0 246.0
GEO-20 455.0 455.0 384.0 384.0 408.0 408.0 413.0 413.0
GEO-30 802.0 802.0 693.0 693.0 746.0 746.0 757.0 757.0
GAB 92.0 92.0 89.0 89.0 96.0 96.0 92.0 92.0
MST 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0
CI-PCA 274.4 427.7 269.7 412.1 283.8 435.0 305.7 458.8
CI-ADJ-PCA 108.2 246.5 107.7 234.6 109.0 251.5 114.8 275.8
CI-PG 325.5 441.3 330.9 397.9 342.8 447.2 375.3 519.7
CI-ADJ-PG 96.8 152.6 101.2* 152.5 95.7* 149.6* 102.2* 165.3
CI2-PCA 132.6 158.9 134.6 161.2 141.8 176.3* 146.9 204.9
CI2-ADJ-PCA 76.7* 85.8* 71.3* 81.4* 65.0* 81.5* 60.9* 70.0*
CI2-PG 135.4* 148.1 134.3* 149.2* 137.5* 155.4 140.5* 153.9
CI2-ADJ-PG 77.8* 80.5* 72.5* 75.6* 63.7* 72.9* 59.4* 58.5*
c) MCC
GEO-10 0.64 0.64 0.68 0.68 0.56* 0.56* 0.44* 0.44*
GEO-15 0.59 0.59 0.73 0.73 0.68 0.68 0.62 0.62
GEO-20 0.47 0.47 0.60 0.60 0.68 0.68 0.69 0.69
GEO-30 0.28 0.28 0.38 0.38 0.44 0.44 0.51 0.51
GAB 0.54 0.54 0.54 0.54 0.41 0.41 0.39 0.39
MST 0.49 0.49 0.43 0.43 0.36 0.36 0.29 0.29
CI-PCA 0.42 0.25 0.39 0.24 0.33 0.19 0.26 0.14
CI-ADJ-PCA 0.60 0.34 0.53 0.33 0.43 0.25 0.34 0.18
CI-PG 0.41 0.34 0.39 0.37 0.35 0.32 0.27 0.21
CI-ADJ-PG 0.64 0.52 0.55* 0.48 0.45* 0.41* 0.35* 0.29
CI2-PCA 0.77 0.69 0.69 0.65 0.58 0.55* 0.46 0.40
CI2-ADJ-PCA 0.65* 0.65* 0.55* 0.57* 0.42* 0.46* 0.33* 0.33*
CI2-PG 0.80* 0.75 0.72* 0.69* 0.59* 0.60 0.48* 0.45
CI2-ADJ-PG 0.66* 0.65* 0.56* 0.56* 0.42* 0.44* 0.32* 0.31*

Table 2 – Topologies of the dispersal graphs and genetic graphs. a) Topologies of the dispersal graphs. Maximum
dispersal distances are given in CD units and in kilometres (conversion obtained after performing the linear regression
of CD values against geographical distances values). b) Number of links in the genetic graphs. c) Matthews correlation
coefficients assessing the topology similarity of both types of graphs (genetic and dispersal), according to the type of
genetic distance and the pruning method in the four landscape/distribution of populations configurations and at two
generations (see table 1 for the graph names). Mean values and standard deviations were computed for the 10 runs

simulated in each scenario but standard deviations are not displayed because they were negligible. Matthews
correlation coefficients above 0.6 and corresponding numbers of links in the genetic graphs are displayed in bold. Values

referring to generation 500 are displayed in italics. Stars indicate that some of the ten graphs created for each
combination were not connected.
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4 Discussion

In this study, we demonstrated that the ability of different pruning methods to identify the precise
topology of dispersal networks is highly variable, especially between methods based either on geogra-
phical distance or genetic independence criteria. In addition, we highlighted the importance of graph
pruning for assessing landscape effects on gene flow in non-equilibrium situations. We provide users
with rough guidelines that are schematically illustrated in Figure 15.

4.1 When and why to prune a genetic graph ?

On the one hand, graph pruning is hardly avoidable when the objective is to identify the topology
of the direct dispersal network followed by individuals (Figure 15). Indeed, except in very rare pan-
mictic configurations or when the study area is very small, dispersal events are not expected between
all population pairs (Kimura et Weiss, 1964). On the other hand, our results show that the relevance
of graph pruning for inferring landscape resistance to gene flow depends on the scale at which gene
flow effect on differentiation is detectable. When an IBLR pattern is observed at the scale of the entire
landscape, graph pruning hardly ever improved the inference made from a complete graph, except
when pruning relied on the conditional independence principle and squared genetic distances (CI). In
contrast, when this pattern is observed up to a limited scale, graph pruning strengthened the linear
correlation between genetic distances and cost-distance values driving the simulation, suggesting that
graph pruning is useful to infer landscape resistance to gene flow in this situation.

Migration-drift equilibrium is less likely to be reached for the complete set of sampled population
pairs when dispersal distances are short regarding the study area and/or landscapes have undergone
recent modifications. Such non-equilibrium situations correspond to the case-IV pattern of IBD pro-
posed by Hutchison et Templeton (1999). It has been observed in several theoretical (Slatkin, 1993)
and empirical studies (Ciofi et al., 1999 ; Clegg et Phillimore, 2010 ; Hänfling et Weetman, 2006 ; Hut-
chison et Templeton, 1999 ; Kuehn et al., 2003 ; Méndez et al., 2011) and is expected to be frequent
in landscape genetic studies dealing with dynamic human-shaped landscapes (Manel et Holderegger,
2013 ; Storfer et al., 2010). In such situations, not pruning a genetic graph might be problematic if
the objective is to infer landscape resistance to gene flow. Indeed, such inferences may involve genetic
distances that do not reflect the long-term effect of landscape on genetic structure. Wagner et Fortin
(2013) suggested that considering a subset of population pairs could increase the power of distance-
based analyses in landscape genetics. Indeed, a few studies reported stronger relationships between
landscape structure and population genetic structure using this approach (Angelone et al., 2011 ; Cos-
ter et al., 2015 ; Jaquiéry et al., 2011 ; Keller et al., 2013 ; Van Strien et al., 2015). Most of them used
geographical thresholds somehow linked to maximum dispersal abilities and they considered between
populations distances while ignoring their spatial arrangement (but see Keller et al. (2013) for an
explicit graph-based approach). However, Van Strien (2017) argued that population topology (i.e.,
the arrangement of populations throughout a landscape) should be better incorporated in link-based
landscape genetic studies. In this context, graph-theoretic methods offer great opportunities in link
selection (Dyer, 2015b), but to date, the relative performance of the wide range of graph pruning
methods had not been assessed.
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4.2 How to prune a genetic graph to identify the precise topology of the dispersal
network ?

Our results show that pruning methods based on topological constraints are rarely suitable for
recovering the topology of the dispersal network. Indeed, minimum spanning trees do not include any
cycles and Gabriel graphs cannot take into account the presence of some long-distance dispersal events
between population pairs. Because topological constraints generally impose a constant number of links
given the number of populations, they lack ecological significance (Serrano et al., 2009).

When dispersal capacities of the study species are precisely known, pruning based on geographical
distance thresholds always makes it possible to recover well the topology of the realised dispersal
graphs, and this method is often the best one. Of course, estimating dispersal capacities is a difficult
task (Schneider, 2003 ; Van Dyck et Baguette, 2005), and even if several thresholds can be tested in
empirical studies, it is impossible to determine which genetic graph reflects best the true dispersal pat-
tern. As expected, our results showed that a serious underestimation of maximum dispersal distance
led to a disconnected graph, thus wrongly suggesting the existence of landscape barriers to dispersal.
The similarity between genetic graphs pruned using distance thresholds and realised dispersal graphs
may also depends on the correlation strength between cost distances (CD) and geographical distances,
which is sometimes high (Marrotte et Bowman, 2017). However, geographical distance is not always
a good proxy of CD (Balkenhol et al., 2009b), for instance when a barrier prevents dispersal between
close populations or less frequently when large geographical distances are covered by dispersing indivi-
duals because they correspond to low CD values. Ignoring these rare long distance dispersal event may
be problematic given their ecological and evolutionary consequences (Clobert et al., 2012 ; Greenbaum
et Fefferman, 2017 ; Nathan et al., 2003).

Our results also suggest that building genetic independence graphs is a suitable option to recover
dispersal network topology when dispersal distances are unknown, especially in less connected confi-
gurations (A and B, Table 2). In the latter case, these results can be as satisfactory as when dispersal
distance is known. The topology of the dispersal graphs is better recovered when the covariance is
computed with the original popgraph method from genetic distances (CI2) instead of squared genetic
distances (CI). In the latter case, the presence of links in genetic graphs that were never followed by
dispersing individuals during the simulations indicates that it does not identify direct dispersal paths
reliably. The variability in the number of links among independence graphs was mainly due to the
covariance formula, the genetic distance, the p-value adjustment, and to a lesser extent the generation.
In contrast, the expected large difference in the number of links between very different connectivity
configurations (A and D) was not observed.

It may appear puzzling to infer single-generation dispersal events from genetic structure shaped
by multi-generational dispersal. However, it seems to be the promise behind the genetic independence
graphs as the conditional independence is supposed to recover the actual route of propagules (Dyer,
2015b). Though our results seem to support this idea in some conditions, further research is needed
on this pruning method. For instance, we expect this method to perform poorly when sampling is
incomplete, which is often the rule in empirical studies, but the potential bias this introduces in the
inferences remains to be estimated.
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4.3 How to prune a genetic graph to infer landscape resistance to dispersal ?

Genetic graphs reflecting precisely the dispersal network topology are not necessarily those that
enable to quantify well landscape effects on dispersal. Indeed, the distance of maximum correlation
(DMC) was always larger than the maximum dispersal distance in the simulation (Figure 12), sugges-
ting that the set of genetic distance values to include in link-based analyses, should not be restricted
to direct dispersal paths. Migration-drift equilibrium may become established between populations
separated by distances beyond dispersal capacities, as expected under the stepping-stones model of
Slatkin (1993), because they may exchange genes over several generations even if not connected by
direct dispersal paths. We suggest including such population pairs in link-based inferences because
their genetic divergence should reflect landscape influence on gene flow. Our view contrasts with the
exclusive use of population pairs that are within migration range of each other recommended by
others when assessing the effect of landscape on gene flow (Keller et al., 2013 ; Van Strien et al., 2015 ;
Van Strien, 2017). Therefore, a reliable pruning method to estimate landscape resistance to gene flow
should identify population pairs whose genetic differentiation reflects the long term gene flow between
them.

In this context, we do not advise using pruning methods based on fixed criteria (i.e. geographi-
cal distances or topological constraints), even if they provided correlations between genetic distances
and CD that were slightly lower than the maximum correlation obtained for a given configuration
at generation 50, especially when using DPS (Figure 13). Indeed, these methods seem inappropriate
because the spatial scale of IBLR changes over time (McRae, 2006). Pruning methods relying on
genetic data and statistical inference seem to provide the best inference of landscape resistance as
they can account for the dynamic nature of IBLR. Indeed, in case-I and case-IV patterns of IBLR,
the correlation between genetic distances associated with the genetic graph links and CD values was
maximised when using pruning methods based upon the conditional independence principle. However,
this result only holds when computing the covariance from squared genetic distances to stick with
mathematical requirements (Everitt et Hothorn, 2011 ; Magwene, 2001 ; Smouse et Peakall, 1999).
Although the original popgraph method reproduced the dispersal pattern quite well, it often produ-
ced the lowest correlation between genetic distances and CD. Nevertheless, these methods deserve
further investigation because some connected population pairs in our independence graphs (using our
modified method) were separated by CD values larger than the DMC. Even if the use of the DMC
to determine the spatial scale at which genetic structure depends on both gene flow and drift needs
stronger theoretical support, this suggests that genetic differentiation between these populations may
still need time before stabilising.

We believe that an essential but tricky issue remains the identification of population pairs matching
migration-drift equilibrium. Ciofi et al. (1999) developed a likelihood-based approach to assess whether
population structure is best explained by a model of migration-drift equilibrium or by a model of
pure drift. However, it seems that this approach fails to detect case-IV patterns of IBD (Hänfling et
Weetman, 2006). Assuming that the DMC may be used as a proxy of the spatial scale of migration-drift
equilibrium, a promising approach would consist in pruning the genetic graphs with a CD threshold
equal to the DMC. This approach requires knowledge of the cost values associated with landscape
features to estimate the CD between population pairs. However, assessing cost scenarios is often the aim
of empirical link-based analyses (Balkenhol et al., 2016). Recent methods for optimisation of landscape
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resistance surfaces have been developed (Peterman, 2018), and a potential improvement would consist
in using genetic graphs pruned with different CD thresholds in such optimisation procedures.

4.4 Which genetic distance to use and how ?

Weighting graph links using the DPS or Euclidean genetic distances always produced a better infe-
rence of landscape influence on gene flow than using FST, even if the difference in performance of these
genetic distances decreased as pairwise genetic differentiation tends to reach its equilibrium level (i.e.
from G50 to G500). Though FST is an excellent measure of genetic differentiation, using it for par-
ticular demographic inferences (e.g. the number of migrants entering a population every generation)
requires assumptions of migration-drift equilibrium to be met (Neigel, 2002 ; Whitlock et Mccauley,
1999). Further theoretical work is required to assess the sensitivity of FST-based inferences of land-
scape resistance to equilibrium conditions. Besides, DPS had already been shown to better reflect
recent landscape changes than other genetic distances, including FST (Landguth et al., 2010 ; Robin
et al., 2015). We would expect other genetic distances such as the Chord distance (Cavalli-Sforza et
Edwards, 1967) to provide similar results as those obtained with DPS.

Once the genetic graph has been pruned, we discourage summing genetic distances along shortest
paths to create a complete matrix of graph-based genetic distances. This approach led to spurious
conclusions by detecting an isolation by distance pattern instead of the true isolation by landscape
resistance pattern when graph pruning was based on geographical thresholds or topological constraints
(Figure 14). Interestingly, landscape influence on dispersal was frequently better recovered when using
these graph-based genetic distances derived from independence graphs (CI2) than when using the
complete matrix of FST (Figure 14). This result has been previously used to evidence the value of this
graph-based genetic distance (Dyer et al., 2010). However, the correlation between genetic distances
and the driver of dispersal (i.e. CD) was lower when considering these graph-based genetic distances
than when using the complete matrix of corresponding raw genetic distances.

4.5 Limits and perspectives

Our simulations produced contrasted patterns of connectivity, but we acknowledge that our re-
sults are limited to cases where a single functional unit of populations that can somehow exchange
migrants (i.e. a dispersal network made of a single component) is considered. We still need to investi-
gate relative performances of graph-theoretic methods in landscapes with complete barriers isolating
population clusters. The differences we detected between the compared methods were informative
and promising, yet sometimes subtle. Although the migration rates we obtained were similar to those
reported by Bowne et Bowers (2004), they were larger than those reported from other empirical data
(Meirmans, 2014) or from simulated data reproducing case-IV patterns (Van Strien et al., 2015). Gi-
ven that case-IV patterns of IBLR were observed in situations where dispersal was most constrained,
repeating our simulations with more limited dispersal would have produced stronger contrasts bet-
ween complete and pruned graphs in their ability to infer landscape resistance to gene flow and might
have made the discrimination between pruning methods even more straightforward. Considering that
low migration rates are probably the norm, this reinforces the relevance of genetic graph pruning in
empirical studies. However, it remains to be determined whether there is a threshold below which
dispersal has only a marginal effect on genetic differentiation as compared with genetic drift. If this
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case could reveal a complete barrier to dispersal, it would prevent from inferring the relative resistance
of the different landscape features surrounding populations.

Our results challenge a common practice in landscape genetics consisting in using the complete
matrix of genetic distance to infer the resistance of landscape features. Consequently, it must be
further examined whether and how graph-theoretic methods may improve calibration of resistance
surfaces. Here, we did not compare different cost scenarios as we knew the "true" cost values driving
the simulation. We therefore assumed that maximising the linear correlation (Mantel r) between ge-
netic distances and landscape distances measured for a subset of population pairs allows for reliably
identifying the best graph construction method, i.e. the one that selects the best subset of population
pairs for the analysis (but see Graves et al. (2013)). As we did not aim at performing a fine-tuned
calibration of cost values, we consider our approach as suitable (Shirk et al., 2017b ; Zeller et al., 2016).

In our simulations, we assumed all populations of the study area were sampled. Such a sampling in-
tensity is rarely achieved in practice although it is often recommended (Keller et al., 2013 ; Van Strien,
2017). Assessing how partial sampling of populations affects our conclusions needs further investigation
(as in Koen et al. (2013) and Naujokaitis-Lewis et al. (2013)). In these situations, the complementarity
between genetic graphs and landscape graphs needs to be explored, because the nodes of the latter are
the exhaustive set of potential habitat patches in the study area (Foltête et Vuidel, 2017). In addition,
a growing set of studies in landscape genetics now use individual-based sampling schemes. Though
the conditional independence principle evaluated in our study is not applicable when nodes are indi-
viduals, a few studies have applied genetic graphs to individuals (Draheim et al., 2016 ; Greenbaum
et al., 2016). This possibility offers a great potential and deserves further investigation.

Lastly, gene flow and drift were the main processes driving genetic differentiation in our simulations.
Drift strength depends on population sizes, which were maintained equal and constant over generations.
Although this choice allowed us to keep drift constant among our simulations in order to focus only on
the effect of landscape on dispersal and to substantially reduce computation times, we acknowledge
that it strongly simplifies the reality. Indeed, landscape changes also create spatial heterogeneity in
effective population sizes, which can be a strong driver of genetic differentiation (Prunier et al., 2017).
Besides, local features such as patch size or habitat quality can affect gene flow between populations
(Pflüger et Balkenhol, 2014 ; Robertson et al., 2019 ; Weckworth et al., 2013), though we did not
make it possible in our simulations. In this context, gravity models seem particularly relevant as they
can be based on genetic graphs and additionally include local variables (Murphy et al., 2010a ; Watts
et al., 2015 ; Zero et al., 2017).
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Objective 2:
Infer landscape resistance

to gene flow

Objective 1:
Identify the topology

of the dispersal network
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Figure 15 – Guidelines based on our results to build and analyse genetic graphs for i) identifying the topology of a
dispersal network and ii) inferring landscape resistance to gene flow. CI2 (CI) : Conditional independence assessed with

(squared) genetic distances.
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Figure 16 – Scatter plots of the genetic distance (FST) plotted against cost-distance at generation 50. Cases A to D
illustrate the gradient of IBD patterns (from type-IV to type-I) along the first component of the PCA. Solid vertical

lines indicate the maximum dispersal distance, dashed lines indicate the DMC.
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Figure 17 – Illustration of the potential bias induced by the use of the graph-based genetic distance. Scatter plots of
the complete matrix of DPS (A) or the graph-based DPS from the graph GEO-20-DPS (B) against the CD. Both
scatter plots are combined in panel C to display genetic distance value differences induced by the sum of genetic

distances. Panel D illsutrates the mechanism behind this. Populations A and D cannot directly exchange propagules
while dispersal occurs in a stepwise way between population pairs A-B, B-C and C-D. Although the genetic distance
between A and D is high, it is not directly proportional to the distance between and A and D because the relationship
between genetic and landscape distance flattens out, as expected under a case-IV pattern of IBLR. Considering that

the genetic distance GDAD between A and D is equal to GDAB +GDBC +GDCD therefore over-estimates it. Example
data come from the simulation A (generation 50). Solid vertical lines indicate the maximum dispersal distance, dashed

lines indicate the DMC computed with the DPS at generation 50.
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Figure 18 – 6 examples of graphs (from left to right and top to bottom) : a dispersal graph, a graph pruned at a
geographical distance of 15 km, a Gabriel graph, a Minimum Spanning Tree and two independence graphs (see table 1
for the graph names). Example data come from a run of the simulations performed for configuration A (generation 50).

Link width is proportional to genetic distance values.
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Figure 19 – Mantel correlation between genetic distances and cost-distances separating nodes directly connected on
the genetic graphs, according to the type of genetic distance and the pruning method at generation 500 (see table 1 for
the graph names). Mean ± SD values were computed for the 10 runs simulated in each scenario. Blue bars refer to the
correlation coefficient between genetic distance and geographical distance, when it is above 0.3. Black bars refer to the

correlation coefficient obtained using every population pair to compute the correlation. When black and blue bars
overlap, the bar is black. Stars indicate graphs counting several components. The dashed line indicates the maximum r

value obtained for each configuration.
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Figure 20 – Mantel correlation between graph-based genetic distances and cost-distances separating nodes on the
genetic graphs, according to the type of genetic distance and the pruning method at generation 500 (see table 1 for the

graph names). Mean ±SD values were computed for the 10 runs simulated in each scenario. Blue bars refer to the
correlation coefficient between genetic distance and geographical distance, when it is above 0.5. Black bars refer to the

correlation coefficient obtained using every population pair to compute the correlation. When black and blue bars
overlap, the bar is black. Stars indicate graphs counting regularly several components. The dashed line indicates the

maximum r value obtained for each configuration.
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B - Glossary of acronyms

ADJ Designates a genetic graph pruned using the conditional independence principle and p-value
Adjustment

CD Cost Distance

cGD Conditional Genetic Distance

CI Designates a genetic graph pruned using the Conditional Independence principle and computing
the covariance using squared genetic distances between populations

CI2 Designates a genetic graph pruned using the Conditional Independence principle and computing
the covariance using squared genetic distances between populations

COMP Designates a Complete genetic graph (not pruned)

DMC Distance of Maximum Correlation. Landscape distance threshold below which the subset of
population pairs maximize the linear correlation between genetic and landscape distances

G50 (G500) Generation 50 of the simulation (Generation 500)

GAB Designates a genetic graph with the topology of a Gabriel graph

GEO Designates a genetic graph pruned using a geographical distance threshold

IBD Isolation By Distance

IBLR Isolation By Landscape Resistance

MST Designates a genetic graph with the topology of a Minimum Spanning Tree

PCA Principal Component Analysis. Also designates a genetic graph whose links are weighted using
a Euclidean genetic distance computed after the Principal Component Analysis of the population
allelic frequencies.

PG Designates a genetic graph whose links are weighted using a Euclidean genetic distance computed
using the same formula as that used in popgraph package.

C - Mathematical background : independence graphs

Two events or independent variables are conditionally independent if they are statistically inde-
pendent after accounting for a third event or variable (Magwene, 2001). An independence graph is a
graph that summarizes conditional independence relationships between a set of variables (Magwene,
2001). Genetic independence graphs were first used by Dyer et Nason (2004) in population genetics. In
this case, the "variables" are populations and the series of values of each "variable" are allelic frequen-
cies. Creating a genetic independence graph is tantamount to identifying pairs of populations that can
be considered independent once all relationships with other populations have been taken into account.

Let Y be a set of p variables following a normal multivariate distribution : Y = {y1, y2, . . . , yp}.
The three following assumptions are equivalent (Krzanowski et Marriott, 1995, in Magwene, 2001) :

— y1 and y2 variables are independent, conditionally to YK , with YK every subset of Y excluding
y1 and y2.

— Partial correlation between y1 and y2 is null : ρij.{K} = 0

— If C is the covariance matrix of the set of variables Y, then the element πij of the inverse
covariance matrix Π = C−1 (precision matrix), is null.
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Therefore, to assess conditional independence between a set of populations, partial correlation
matrix or precision matrix have first to be calculated from genetic data. In population genetics, the
multilocus genotypes of individuals from populations are frequently coded as a matrix with alleles as
columns and individuals as rows. The absence of an allele is coded as a 0. The presence of 1 or 2 copies
of an allele in the genotype of an individual are coded respectively as a 0.5 or a 1. If these data are
coded with 0, 1 and 2 values, as in Fortuna et al. (2009) and Smouse et Peakall (1999), it does not
affect the calculation.

First, mean allelic frequencies in each population are computed. These frequencies are elements of
a matrix F counting as many columns as alleles and as many rows as populations. The allele frequen-
cies are the series of values characterizing each population, considered as variables in the construction
of the genetic independence graph. The next step consists in computing the covariance between po-
pulations (betweens rows of F). Dyer et Nason (2004) calculates this covariance by first calculating
a matrix of Euclidean genetic distance between populations and then following Gower (1966), who
demonstrated the duality between distance and covariance.

To that purpose, the matrix F of mean allelic frequencies by population has to be centered both
by rows and by columns for the calculation of covariance from genetic distance in subsequent steps
to be correct. However, in this particular case, this step is not mandatory given 1) the row sums are
all equal to the number of loci because the allelic frequencies sum to 1 for each locus, and 2) the
centering by columns does not affect the Euclidean distance between populations (rows). Without the
double-centering, the between populations covariance matrix calculated from the genetic distances is
however equivalent to the matrix of covariance between the columns of the transpose X of the double-
centered matrix F of allelic frequencies. We demonstrate why thereafter. We also demonstrate why
the covariance has to be calculated from the squared distances and not from distances, from a strict
mathematical point of view, following Everitt et Hothorn (2011)(page 107), Gower (1966) and Smouse
et Peakall (1999)(equation 13).

The Euclidean genetic distance dij between populations i and j is calculated from the transpose
matrix X of the matrix F of allelic frequencies. X is of dimension n× p, with n the number of alleles
and p the number of populations. The genetic distance is computed with the following formula :

dij =

√√√√ n∑
k=1

(xki − xkj)2 (3.1)

The sample covariance cij between variables/populations i and j is :

cij = 1
n

n∑
k=1

(xki − x̄i)(xkj − x̄j) (3.2)

As F has been centred both by rows and by columns, x̄i = x̄j = 0. Then, the sample covariance
between variables/populations i and j is simply :

cij = 1
n

n∑
k=1

xkixkj (3.3)
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And consequently :

cii = 1
n

n∑
k=1

x2
ki

cjj = 1
n

n∑
k=1

x2
kj

(3.4)

Then, the covariance matrix C is :
C = 1

n
XTX (3.5)

such that XT is of size p× n, X of size n× p and C of size p× p.

The sum of the elements of each row of C is :
p∑
j=1

cij =
p∑
j=1

1
n

n∑
k=1

xkixkj

= 1
n

[
(
n∑
k=1

xkixk1) + (
n∑
k=1

xkixk2) + . . .+ (
n∑
k=1

xkixkp)
]

= 1
n

[(x1ix11 + x2ix21 + . . .+ xnixn1) + . . .+ (x1ix1p + x2ix2p + . . .+ xnixnp)]

= 1
n

x1i × (
p∑
j=1

x1j) + x2i × (
p∑
j=1

x2j) + . . .+ xni × (
p∑
j=1

xnj)


= 1
n

[x1i × 0 + x2i × 0 + . . .+ xni × 0]

= 0

(3.6)

as the row sums of X are null since F was centered by rows and by columns.

The trace T of C is :
T =

p∑
i=1

cii (3.7)

Let express d2
ij in function of the elements of C :

d2
ij =

n∑
k=1

(xki − xkj)2

=
n∑
k=1

(x2
ki − 2xkixkj + x2

kj)

=
n∑
k=1

x2
ki +

n∑
k=1

x2
kj − 2

n∑
k=1

xkixkj

= n× (cii + cjj − 2cij)

(3.8)

We then have :
p∑
i=1

d2
ij =

p∑
i=1

n× (cii + cjj − 2cij)

= n× (
p∑
i=1

cii +
p∑
i=1

cjj − 2
p∑
i=1

cij)
(3.9)
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As
∑p
j=1 cij = 0 and C is a symmetric matrix,

∑p
i=1 cij = 0. We then have :

p∑
i=1

d2
ij = n× (T + pcjj − 2× 0)

= n× (T + pcjj)
p∑
j=1

d2
ij = n× (T + pcii)

(3.10)

We calculate
∑p
i=1

∑p
j=1 d

2
ij :

p∑
i=1

p∑
j=1

d2
ij =

p∑
i=1

p∑
j=1

n× (cii + cjj − 2cij)

= n× (
p∑
i=1

p∑
j=1

cii +
p∑
i=1

p∑
j=1

cjj − 2
p∑
i=1

p∑
j=1

cij)

= n× (pT + pT − 2× 0)

= n× 2pT

(3.11)

We then calculate d2
i•, d2

•j and d2
•• :

d2
i• = 1

p

p∑
j=1

d2
ij

= 1
p
× n× (T + pcii)

= n× (T
p

+ cii)

= n× (1
p

p∑
i=1

cii + cii)

d2
•j = n× (1

p

p∑
i=1

cii + cjj)

d2
•• = 1

p2

p∑
i=1

p∑
j=1

d2
ij

= n

p2 × 2pT

= 2× n

p

p∑
i=1

cii

(3.12)
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Because of the formula used to calculate the Euclidean distance, we have :

d2
ij = n× (cii + cjj − 2cij)

cij = −1
2(
d2
ij

n
− cii − cjj)

= − 1
2n(d2

ij − n× cii − n× cjj)

= − 1
2n(d2

ij − n× cii − n×
1
p

p∑
i=1

cii − n× cjj − n×
1
p

p∑
i=1

cii + 2n× 1
p

p∑
i=1

cii)

= − 1
2n

[
d2
ij − n× (1

p

p∑
i=1

cii + cii)− n× (1
p

p∑
i=1

cii + cjj) + 2n× 1
p

p∑
i=1

cii

]

= − 1
2n(d2

ij − d2
i• − d2

•j + d2
••)

(3.13)

Hence, to conform with the covariance definition, cij has to be calculated from squared distances
although Dyer et Nason (2004) in popgraph package use the following formula :

cij = −1
2(dij − di• − d•j + d••) (3.14)

The division by n in (3.13) does not have any influence on subsequent computation steps, given
the covariance matrix C is then standardised into a correlation matrix R. This correlation matrix is
inverted into the inverse correlation matrix Ω, which is also standardised. The non-diagonal elements
ωij of Ω are multiplied by -1 to obtain the partial correlation matrix P such that (Magwene, 2001) :

ρij = −ωij√
ωiiωjj

(3.15)

Finally, to determine if populations i and j are independent conditionally to all other populations,
we have to test if each element ρij is significantly different from 0. To that purpose, the Edge Exclusion
Deviance criterion (EED) is calculated following Whittaker (2009) as :

EED = −N ln(1− ρ2
ij) (3.16)

with N the total number of observations (total number of individuals, as implemented by Dyer et
Nason (2004)).

We assumed that an independence genetic graph should have links between populations positively
correlated if it is to represent direct gene flow between populations. Therefore, we converted negative
elements of P into 0 before the calculation of EED, although it was not the case in the original
method of Dyer et Nason (2004).

EED has an asymptotic χ2 distribution with one degree of freedom (Whittaker, 2009). This pro-
perty allows to test the significance of every EED value and thereby to test the hypothesis H0 : ρij = 0
against H1 : ρij 6= 0. When H0 is rejected, there is a link between populations i and j in the resulting
graph.
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The 0.05 level is commonly used to test the significance of EED, without p-values adjustment in
the original method. However, we adjusted p-values using Holm (1979) method to limit the risk of
type-I error because p(p−1)

2 tests are carried out to build a graph.

D - Computation of the DPS genetic distance

The DPS is a genetic distance that relies upon the dissimilarities between the allele pools of dif-
ferent populations. It was initially developed as an inter-individual genetic distance (Bowcock et al.,
1994). An "inter-population version" exists and has been used repeatedly in landscape genetics (Mur-
phy et al., 2016).

To compute it, we used the formula used in MSA software :

DPS = 1−
∑D
d

∑K
k min(fakd,i , fakd,j )

D

such as akd is the allele k at locus d, fakd,i is the frequency of akd in population i, D is the total number
of loci and K is the allele number at each locus.

This genetic distance can be computed in R with the function mat_gen_dist() in graph4lg

package.
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Annexe A4

graph4lg : a package for constructing and
analysing graphs for landscape genetics in R

Abstract
1 - In landscape genetics, habitat connectivity and population genetic structure have been analysed using graph-theoretic

approaches to understand how landscape features influence demography (i.e. dispersal and population size).
2 - Despite substantial advances in enhancing both genetic and landscape graph use, a software tool bringing together a large
range of construction and analysis parameters for these two types of graphs was lacking in the landscape genetic toolbox.
Moreover, although these two types of graphs appear complementary for answering landscape genetic questions, methods for
comparing them have not been forthcoming.
3 - We have developed an R package to improve and encourage the use of these graphs. It includes functions for converting
and importing genetic data and for genetic distance computing. It also implements time-efficient geodesic and cost-distance
calculations from spatial data. A large range of parameters can be used to create genetic and landscape graphs from these data,
including several graph pruning methods. We made available to R users the command-line facilitaties of Graphab software to
easily model landscape graphs in R. The package functions perform preliminary analysis to adapt methodological choices to
research questions. Landscape and genetic graphs created can be analysed with node-level metrics as well as link-level and
modularity analyses. Users can compare and visualise these graphs and export them to shapefiles to facilitate interpretation
and subsequent analyses.
4 - graph4lg contributes to expanding landscape and genetic graph potential for analysing ecological connectivity while en-
couraging further investigations on methodological implications related to these tools.

Keywords : ecological connectivity, dispersal, graph theory, landscape genetics, R

Cet article a été publié dans Methods in Ecology and Evolution en novembre 2020 :

Savary, P., Foltête, J. C., Moal, H., Vuidel, G. & Garnier, S. 2021. graph4lg : a package for constructing and analysing

graphs for landscape genetics in R. Methods in Ecology and Evolution, 12(3), 539-547
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1 Introduction

Landscape genetic studies aim at understanding how landscape characteristics such as habitat
spatial distribution and matrix quality shape population genetic structure (Balkenhol et al., 2016 ;
Manel et al., 2003). In this recent field, new methods have been developing at a sustained pace to
describe landscape structure (e.g. Galpern et al. (2012)), population genetic structure (e.g. Al-Asadi
et al. (2019) ; Prunier et al. (2017) ; Shirk et Cushman (2011)) and to bring landscape and genetic
data together in multi-level analyses (Hall et Beissinger, 2014 ; Wagner et Fortin, 2013). Among these
methods, graph-theoretic approaches were identified as particularly relevant (Manel et Holderegger,
2013) because they grasp interactions between sets of habitat patches or populations in a comprehen-
sive way (Dale et Fortin, 2010 ; Dale, 2017 ; Fortin et al., 2012).

A graph is basically a set of nodes connected by a set of links. In landscape ecology, the use of
landscape graphs dates back to the 2000s (Galpern et al., 2011 ; Urban et Keitt, 2001) and has deve-
loped through the availability of free software tools such as Graphab (Foltête et al., 2012a) or Conefor
(Saura et Torne, 2009). The nodes of landscape graphs are habitat patches and their links correspond
to potential dispersal paths, e.g. identified by computing least-cost paths across resistance surfaces.
From these graphs, a large range of connectivity metrics can be computed (Rayfield et al., 2011) and
used for inference (Pereira et al., 2011) or conservation-oriented decision making (Foltête et al., 2014).
Besides, landscape graph nodes can be partitioned through modularity analyses to identify manage-
ment units or perform analyses at a coarser grain (Fletcher et al., 2013 ; Foltête et Vuidel, 2017).

Although landscape graphs enable close investigation of habitat connectivity, their construction
often relies upon expert-based opinion and combining them with biological data can improve this
approach (Foltête et al., 2020). Landscape graph modelling software tools already make possible the
import of biological data (Foltête et al., 2012a) and genetic data are a relevant candidate for such
a combination (Luque et al., 2012). Thus, this approach would benefit from being performed in a
statistical software where genetic data processing and complex statistical analyses can both be done.

Similarly, migration models theorised in population genetics (Kimura et Weiss, 1964 ; Wright,
1931) often rely upon topological network representations and even if these models rarely reflect real
situations (Greenbaum et Fefferman, 2017 ; Milligan et al., 2018), population geneticists have deve-
loped a large range of genetic graph construction methods that can potentially fit all the observed
migration networks (Greenbaum et Fefferman, 2017). Thus, population genetic structure has been
frequently represented as genetic graphs in which nodes correspond to sampled populations and links
to substantial gene exchanges between them (Arnaud, 2003 ; Excoffier et al., 1992).

When building a genetic graph, the construction method should always be guided by the specific
research question (Miele et al., 2019). For example, an important step in this process is graph pruning,
which consists in removing some links and should be performed differently if the aim of the analy-
sis is (i) to identify single generation (direct) dispersal paths (Boulanger et al., 2020 ; Dyer, 2015b)
or (ii) to infer landscape effects on dispersal from the genetic differentiation measurements between
populations connected on the graph (Savary, P. et al., in correction ; Van Strien (2017)). Indeed, in
the first case, paths that are not within reach of individuals given their dispersal capacities should be
removed in order to represent the dispersal network topology. In the second case, links corresponding
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to multi-generational indirect dispersal can be conserved given that they reflect the genetic connecti-
vity emerging over generations due to stepping-stone dispersal (Boulanger et al., 2020 ; Saura et al.,
2014). In both cases, several graph pruning methods can be used and must be chosen accordingly
(Greenbaum et Fefferman, 2017 ; Van Strien, 2017). Apart from these link-level analyses, once gene-
tic graphs have been constructed, they can be analysed at the node- and boundary-levels (Wagner
et Fortin, 2013), according to the research question. For example, node-level metric calculations and
module partitions are possible to assess genetic diversity and relative genetic differentiation at the
population level (e.g. Koen et al. (2016)) and to identify population clustering patterns (e.g. Fortuna
et al. (2009)), respectively.

Then, comparing genetic graph characteristics such as node-level indices, graph topology, link
weights and module partitions to the exact same characteristics derived from a landscape graph could
contribute to a better understanding of the effect of habitat spatial patterns on population genetic
structure. It has therefore been claimed that genetic graphs and landscape graphs should complement
each other (Foltête et Vuidel, 2017 ; Galpern et al., 2011 ; Manel et Holderegger, 2013 ; Murphy et al.,
2016). However, a practical tool for building, analysing and comparing these graphs was still lacking.
Accordingly, we have developed the R package graph4lg to bridge all these gaps in the implementation
of landscape and genetic graphs. It provides graph users with a software tool facilitating their choice
and implementation of graph construction and analysis methods and builds on previous developments
of R packages for landscape genetic and graph-theoretical analyses such as igraph (Csardi et Nepusz,
2006), gstudio (Dyer, 2014) or adegenet (Jombart, 2008).

2 Workflow

graph4lg package functions can be divided into four categories following the steps of landscape
genetic analyses :

1. The package allows for genetic and spatial input data processing in preparation for graph
construction, calculating intra-population genetic indices and inter-population genetic and land-
scape distances and performing preliminary analyses through diagnostic plots.

2. It provides users with functions for building genetic graphs and analysis tools for these graphs.

3. In parallel, some ’wrapper functions’ run command-line functionalities of Graphab software
(Foltête et al., 2012a) directly from R to construct and analyse landscape graphs.

4. Finally, genetic and landscape graphs can be compared, plotted and exported to other formats.

This workflow is described in the following sections and depicted in Figure 21. All the package
functions are also listed in Table S1 with their dependencies on other R packages.

2.1 Input data processing

2.1.1 Genetic data

Studies of gene flow pattern and/or intensity and of landscape influence on it rely upon neutral
genetic markers which reflect genetic variation due to demographic changes and are supposedly inde-
pendent from adaptive processes (Holderegger et al., 2006). Microsatellite loci assumed or identified as
being neutral are the most frequent type of markers used in landscape genetics (Storfer et al., 2010).
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Besides, SNP markers are now becoming widespread and can also be used to perform these analyses
provided that loci under selective pressures (identified as outliers) have been discarded (Cushman
et al., 2018 ; Foll et Gaggiotti, 2008). Accordingly, graph4lg functions use genetic data with 2- or
3-digit allele coding to fit the common microsatellite coding. SNP data can also be used when loaded
as genind object in R, because R objects with the genind class attribute from the adegenet package
(Jombart, 2008) are the input of genetic data processing functions from graph4lg. Landscape genetic
analyses performed with graph4lg are population-based and like most applications in this field rely
on the a priori delineation of populations (Milligan et al., 2018 ; Waits et Storfer, 2015). Populations
are identified by the pop strata of genind objects and usually correspond to sampling units.

We included conversion functions (gstud_to_genind, loci_to_genind, structure_to_genind,
genepop_to_genind) to easily get genind objects from formats used in other software tools such as
gstudio (Dyer, 2014), pegas (Paradis, 2010), structure (Pritchard et al., 2000) or genepop (Ray-
mond et Rousset, 1995). We also made possible the creation of external text files in genepop format
from genind objects (genind_to_genepop) for users willing to perform analyses with this commonly
used R package and executable software.

The mat_gen_dist function computes eight different inter-population genetic distances from genind

objects (Table 3). However, ’external’ genetic distance matrices or dist objects imported by users can
be the input of the functions described in the next sections.

Genetic distance Description Eq. Depend. Ref.
FST Fixation index Yes diveRsity Weir et Cockerham

(1984)
Linearised FST Linearised fixation index Yes diveRsity Rousset (1997)
G’ST Standardised fixation index Yes diveRsity Hedrick (2005)
DJost Standardised fixation index Yes diveRsity Jost (2008)
DPS 1 - proportion of shared alleles No None Bowcock et al.

(1994), implemen-
tation of MSA
software formula
(Dieringer et
Schlötterer, 2003)

Euclidean genetic
distance

Computed from allelic frequen-
cies differences

No None Excoffier et al.
(1992)

Weighted Eu-
clidean genetic
distance

Computed from allelic frequen-
cies differences giving more
weights to rare alleles

No None Fortuna et al.
(2009) ; Green-
baum et al. (2016)

PCA-derived Eucli-
dean genetic dis-
tance

Inter-population distance in the
space defined by the princi-
pal components obtained from
a PCA of the allelic frequencies
table

No None Inspired by the
distances computed
by Paschou et al.
(2014) and Shirk
et al. (2017a)

popgraph-derived
genetic distance

Inter-population distance in the
space created after a PCA of the
allelic frequencies table

No None Dyer et Nason
(2004)

Table 3 – Inter-population genetic distances computed with the mat_gen_dist function. The ’Eq.’ column indicates
whether the genetic distance implies that migration-drift equilibrium assumptions are made. The ’Depend.’ column

indicates the R packages on which the function depends for each genetic distance.
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2.1.2 Spatial data

Two kinds of pairwise landscape distance matrices can be computed from point spatial coordinates
and resistance surface raster layers :

— mat_geo_dist function computes geodesic distances from point sets with either projected or
polar coordinate reference systems using Euclidean distance or great circle distance formulas,
respectively.

— mat_cost_dist function computes pairwise cost-distance matrices from a point set, a categorical
resistance surface raster layer and a data.frame indicating the cost associated with each cell
value. This function depends on gdistance package (Van Etten, 2012), but can also use an
external .jar file which substantially reduces computation times for large rasters (Table S2),
providing R users with a time-efficient alternative to gdistance for cost-distance computing.

2.1.3 Preliminary analyses

When the study objective is to infer landscape effects on dispersal from the relationship between
genetic and landscape distances associated with graph links, visualising a scatterplot using complete
distance matrices (scatter_dist) can be a first step before graph construction. Isolation by distance
patterns due to limited dispersal are common in population genetics (Wright, 1943). However, if the
studied species has low dispersal capacities or after a decrease in landscape connectivity, the increase
of genetic differentiation with distance is only observed at a small scale, which tends to expand over
time (Slatkin, 1993). In that case, drift will be more important than migration as a driver of genetic
differentiation between populations separated by large distances. This results in a non-linear relation-
ship between landscape and genetic distances exhibiting a plateau beyond a given landscape distance
threshold (Hänfling et Weetman, 2006 ; Hutchison et Templeton, 1999). Conversely, a linear relation-
ship is expected when equilibrium is established at the scale of the study area. Because migration-drift
equilibrium is a pre-requisite for genetic differentiation to reflect landscape effects on dispersal, in-
ference ignoring it may be biased (Bradbury et Bentzen, 2007 ; Van Strien et al., 2015). Genetic
graph pruning method determines population pairs included in the inference and should therefore be
chosen after consideration of the scale at which populations verify this equilibrium. Similarly, genetic
distances based on fixation indices require equilibrium assumptions to be confirmed so that derived
inferences are reliable (Neigel, 2002 ; Whitlock et Mccauley, 1999).

Van Strien et al. (2015) estimated the threshold distance between population pairs maximizing the
correlation between genetic differentiation and landscape distance. This distance of maximum corre-
lation (DMC) can be viewed as an estimate of the scale at which populations verify migration-drift
equilibrium, i.e. their neighborhood size (Addicott et al., 1987 ; Kierepka et al., 2020). It is computed
by the dist_max_corr function (Figure 22A), which can help choosing among pruning methods (cf.
section 2.2.1).

When the objective is to recover direct dispersal paths by taking into account landscape resistance
and maximum dispersal capacities of the study species, it is important to know how species dispersal
distances expressed in geodesic distance units convert into cost-distance values, especially if geodesic
distance thresholds are used to prune the graphs. To that purpose, the convert_cd function performs
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a linear or log-log linear regression of cost-distance values against geodesic distance values (Tournant
et al., 2013).

2.2 Genetic graph construction and analysis

2.2.1 Genetic graph construction

The graph4lg package implements a wide range of pruning methods for constructing genetic
graphs. Some of these methods can equally apply to landscape graphs. First, graphs can be pruned by
removing the links between populations separated by genetic or landscape distances above or below
a specified threshold value (gen_graph_thr). Such an approach can be efficient for identifying direct
dispersal paths provided maximum dispersal distance is known. It has also been used to select popu-
lation pairs to include in the inference of landscape effects on dispersal (Angelone et al., 2011 ; Keller
et al., 2013). In that case, the distance threshold can be the DMC if a clear plateau is identified in
the IBD pattern.

Second, when the study species is assumed to have stepping stone dispersal or when migration-drift
equilibrium establishes at short distance, graphs can be pruned depending on topological constraints
(gen_graph_topo), thereby constructing minimum spanning trees, planar graphs, k-nearest-neighbour
graphs and Gabriel graphs (Arnaud, 2003 ; Bunn et al., 2000 ; Keller et al., 2013 ; Naujokaitis-Lewis
et al., 2013). The topological constraints can be applied to matrices of landscape distances as well
as genetic distances. Similarly, the edge-thinning method, linked to percolation theory, identifies the
distance threshold above which graph thresholding breaks the graph into more than one connected
component (Urban et Keitt, 2001 ; Rozenfeld et al., 2008) and creates a thresholded graph using this
threshold.

Finally, the gen_graph_indep function creates genetic graphs directly from genetic data stored in
genind objects, in the same way as the popgraph function from the popgraph package. This approach
prunes graphs by conserving links between populations that are dependent on each other based on
the covariance of their allelic frequencies, after having looked at the covariance with allelic frequencies
from all the other populations. This use of the conditional independence principle (Whittaker, 2009) is
supposed to conserve links between populations directly exchanging migrants through single generation
dispersal events (Dyer et Nason, 2004). This function expands the original popgraph function by
implementing p-value adjustments (Benjamini et Hochberg, 1995 ; Holm, 1979), among other options
compared by Savary et al. (in correction).

2.2.2 Genetic graph analyses

Once genetic graphs have been created, the compute_node_metric function computes graph-
theoretic metrics such as the degree, closeness and betweenness centrality indices, which identify
keystone hubs of genetic connectivity (Cross et al., 2018). It also computes the average and sum of
the inverse genetic distance weighting the links. Koen et al. (2016) showed that these relative genetic
differentiation indices can be good proxies of connectivity. Apart from these metrics depending on
graph topology, population-level genetic diversity indices such as allelic richness and heterozygosity
rates can be computed with the pop_gen_index function from genind objects. All these metrics can
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be added as node attributes with the add_nodes_attr function.

Link weights are used to partition nodes into modules (compute_graph_modul) and identify popu-
lation clusters possibly delineated by sharp dispersal limitations (Fortuna et al., 2009 ; Garroway et al.,
2008). We implement several modularity algorithms : fast greedy (Clauset et al., 2004), louvain

(Blondel et al., 2008), optimal (Brandes et al., 2008) and walktrap (Pons et Latapy, 2006) from the
igraph package. Link weights can also be exported into data frames for subsequent link-level analyses
using the graph_to_df function.

2.3 Landscape graph construction and analysis

The graph4lg package integrates the graph construction and analysis options of Graphab soft-
ware (Foltête et al., 2012a) by implementing its command-line functionalities. Thus, both the package
documentation and Graphab software manual can be of substantial help for users.

First, the graphab_project function creates a Graphab project from a categorical raster layer. It
defines habitat patches as contiguous cells with a given cell value and creates a directory containing
this project in the user’s machine. Then, the least cost paths between these habitat patches are com-
puted (graphab_link). Once the Graphab project and link set have been created, users can create
complete, thresholded or planar graphs (graphab_graph). A large range of connectivity metrics can
be computed at the graph or node levels (graphab_metric). Delta-metrics can also be computed, e.g.
for prioritisation analyses. These metrics have been extensively tested and compared in the literature
(Baranyi et al., 2011 ; Rayfield et al., 2011).

Users can either import planar graphs created in Graphab as igraph objects (graphab_to_igraph)
in order to compute metrics in R, or only import link weights or node-level metrics computed with
Graphab (get_graphab_metric, get_graphab_linkset). In cases when users want to relate punctual
field observations to connectivity metrics, they can get the metrics of the nearest habitat patches from
a set of points (graphab_pointset). Finally, users can partition habitat patches through modularity
analyses in Graphab (graphab_modul).

2.4 Landscape and genetic graph comparisons

Although landscape and genetic graphs have each been repeatedly used, their direct comparison
has rarely been performed (Draheim et al., 2016 ; Schoville et al., 2018). To facilitate the interpretation
of their respective topology and the formulation and test of hypotheses regarding their similarities,
the plot_graph_lg function allows users to visualise the topology and connectivity of the created
graphs (Figure 22D). It maps graphs in a spatially-explicit way or implements an attraction-repulsion
algorithm based on link weights (Fruchterman et Reingold, 1991) to assess whether nodes cluster to-
gether independently from their spatial locations. Node metrics, link weights and module partitioning
can also be visualised with this function. Moreover, the link weight distribution can be plotted as a
histogram (plot_hist_w)(Fig. 22C) and the pruning intensity can be visualised by representing po-
pulation pairs in a different color on the scatter plot relating genetic distance with landscape distance
(scatter_dist_g).
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To test the formulated hypotheses, when landscape and genetic graphs share the same nodes, the
correlation between population- or patch-based indices can be assessed (graph_node_compar) in order
to understand the relationship between i) landscape attributes (habitat surface area or connectivity)
and ii) genetic attributes (genetic differentiation or local diversity).

Similarly, the graph_topo_compar function compares the topologies of two graphs (link-based ana-
lysis) by creating a contingency table (based on the presence/absence of corresponding links in both
graphs) and computing indices commonly used to assess classifications (e.g. Matthews’ correlation
coefficient, false discovery rate, accuracy). The congruence of two graph topologies can be visualised
by plotting them on the same map while colouring their links to indicate whether they occur in both
graphs or just one of them (graph_plot_compar). Mismatches between genetic and landscape graph
topology can provide insights regarding the realised connectivity in the study area or the modelisation
method itself.

Finally, quantifying how many node pairs classified in the same module in one graph are also clas-
sified together in the modules created from another graph indicates us how far these graphs reflect the
same real-world situation. This boundary-based analysis is made possible by the graph_modul_compar

function which computes the Adjusted Rand Index (Hubert et Arabie, 1985) to compare partitions.
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Figure 22 – Diagnosis plots (A, B) and genetic graph analysis plots (C, D) produced with the datasets
data_simul_genind and pts_pop_simul obtained after a simulation on cdpop(Landguth et Cushman, 2010). A)
Identification of the distance of maximum correlation (DMC) (Van Strien et al., 2015) with the dist_max_corr

function. Here, the DMC corresponds to the dashed vertical line on plots A and B. B) Scatter plot produced with the
scatter_dist_g function representing the relationship between genetic distance (DPS) and cost-distance. The grey
shaded region around the smoothed line corresponds to the 95 % confidence interval of the smoothing function. The

black dots represent population pairs connected in the Gabriel graph. C) Histogram of the genetic distances separating
the population pairs connected in the Gabriel graph produced with the plot_w_hist function. D) Gabriel graph

mapped with the plot_graph_lg function. Link width is inversely proportional to the genetic distances weighting the
links. Node size is proportional to the connectivity metric Flux derived from the corresponding landscape graph. Node

color indicates the module to which pertains every node after a modularity analysis using compute_graph_modul.
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3 Export facilities and included data

The graphs can be exported to shapefile layers for integration into a GIS (graph_to_shp) and
analyses involving other types of geographical data. Included genetic and spatial data can be used
to discover the functionalities of the package. We included a data set created from simulations with
cdpop(Landguth et Cushman, 2010) on a simulated landscape (data_simul_genind). It consists of
1500 individuals from 50 populations genotyped at 20 microsatellite loci. This dataset exhibits a typical
type-IV pattern of IBD and was used to create Figure 22 and the tutorial presenting the package.

4 Limits and conclusion

Landscape and genetic graphs have great potential for analysing ecological connectivity and we
do not claim to have compiled an exhaustive set of graph construction and analysis methods. Other
pruning methods have been developing (Brooks, 2006 ; Greenbaum et al., 2016 ; Kininmonth et al.,
2010 ; Milligan, in prep ; Peterson et al., 2019) and could be expanded to directed graphs for example.
Besides, a large range of local metrics inspired from the metapopulation theory have been developed
for landscape graphs and could similarly inspire genetic graph local metrics. Graph-based analyses
could also benefit from significance testing approaches through permutations to enhance their robust-
ness. Finally, although Graphab software can efficiently handle very large spatial data sets (Foltête
et al., 2012a), genetic graph modelling can involve higher computational costs, thereby limiting this
approach to smaller spatial and genetic datasets. Further development of the package could introduce
improvements.

Our first goal in developing graph4lg is to bring together and make accessible a large range of
methods currently used in landscape genetics for constructing and analysing graphs. We hope this
package will foster the use of genetic and landscape graphs as well as further investigation regarding
theoretical as well as methodological aspects.
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repository (https://cran.r-project.org/web/packages/graph4lg/index.html).

77

url:https://cran.r-project.org/web/packages/graph4lg/index.html


7 Authors’ contributions

J.C.F., S.G. and H.M. obtained the funding for the project. P.S. and G.V. designed the package
and developed the codes. P.S, J.C.F. and S.G. wrote the manuscript with significant contributions
and remarks from all co-authors.

78



A - Supplementary tables

Table 4 – Functions available in the package and their dependencies on other R packages or software programs

Function name Description Dependencies
Input data processing
genepop_to_genind Convert a genepop file into a

genind object
pegas

genind_to_genepop Convert a genind object into
a genepop file

None

structure_to_genind Convert a file in structure
format into a genind object

pegas

gstud_to_genind Convert a file from a gstudio

or popgraph object into a
genind object

pegas

loci_to_genind Convert a loci object into a
genind object

pegas

pop_gen_index Compute population-level ge-
netic indices

adegenet

mat_gen_dist Compute a pairwise matrix of
genetic distances between po-
pulations

diveRsity for fixation in-
dices, independent codes for
other genetic distances

mat_geo_dist Compute Euclidean geogra-
phic distances between points

None

mat_cost_dist Compute cost distances bet-
ween points on a raster

gdistance for option
"gdistance", external
costdist-0.3.jar file for
option "java", raster, sp,
rappdirs

reorder_mat Reorder the rows and columns
of a symmetric matrix

None

convert_cd Fit a model to convert cost-
distances into Euclidean dis-
tances

ggplot2

kernel_param Compute dispersal kernel pa-
rameters

None

pw_mat_to_df Convert a pairwise matrix

into an edge-list data.frame

None

df_to_pw_mat Convert an edge-list
data.frame into a pair-
wise matrix

None

Genetic graph construction and analysis
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Function name Description Dependencies
dist_max_corr Compute the distance at

which the correlation between
genetic distance and land-
scape distance is maximal

ggplot2

scatter_dist Plot scatterplots of genetic
distance vs landscape distance

ggplot2

gen_graph_thr Create a graph of genetic
differentiation using a link
weight threshold

igraph

gen_graph_topo Create a graph of genetic dif-
ferentiation with a specific to-
pology

igraph for options "mst" and
"comp", independent codes for
options "gabriel", "percol"

and "knn"

gen_graph_indep Create an independence graph
of genetic differentiation from
a genind object

None, adapted from popgraph

compute_node_metric Compute graph-theoretic me-
trics from a graph at the node
level

igraph

compute_graph_modul Compute modules from a
graph by maximising a modu-
larity index

igraph

Landscape graph construction and analysis
get_graphab Download Graphab in the

user’s machine
rappdirs

graphab_project Create a Graphab project External graphab-2.4.jar

file
graphab_link Create a link set in the Gra-

phab project
External graphab-2.4.jar

file
graphab_graph Create a graph in the Gra-

phab project
External graphab-2.4.jar

file
graphab_metric Compute connectivity metrics

from a graph in the Graphab
project

External graphab-2.4.jar

file

graphab_modul Create modules from a graph
in the Graphab project

External graphab-2.4.jar

file
graphab_pointset Create modules from a graph

in the Graphab project
External graphab-2.4.jar

file, sf, sp

get_graphab_linkset Import to R a link set compu-
ted in the Graphab project

None

get_graphab_metric Import to R metrics compu-
ted at the node level in the
Graphab project

None
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Function name Description Dependencies
graphab_to_igraph Create in R landscape graphs

from a Graphab link set
igraph, sf, sp

graph_plan Create a graph with a mini-
mum planar graph topology
from point coordinates

spatstat, igraph

Graph comparisons
graph_node_compar Compare the local properties

of the nodes from two graphs
igraph

graph_topo_compar Compute an index comparing
graph topologies

igraph

graph_plot_compar Visualise the topological dif-
ferences between two spatial
graphs on a map

ggplot2, igraph

graph_modul_compar Compare the partitions into
modules of two graphs

igraph

Graph plotting and export functionalities
add_nodes_attr Add attributes to the nodes of

a graph
igraph

scatter_dist_g Plot scatterplots of pairwise
genetic and landscape dis-
tances to visualise graph pru-
ning intensity

ggplot2

plot_graph_lg Plot graphs in spatial or aspa-
tial bidimensional spaces

ggplot2, igraph

plot_w_hist Plot histograms of graph link
weights

ggplot2

graph_to_shp Export a spatial graph to sha-
pefile layers

sf, sp

graph_to_df Convert a graph into an edge
list data.frame

igraph
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Raster size Nb. points "gdistance" "java"
50× 50 cells

4 0.248 1.457
8 0.249 1.480
16 0.289 1.533
32 0.418 1.652
64 0.882 1.866

100× 100 cells
4 0.921 1.508
8 0.944 1.502
16 1.043 1.551
32 1.160 1.687
64 1.749 2.036

200× 200 cells
4 3.903 2.191
8 3.902 1.601
16 3.854 1.651
32 4.244 1.818
64 4.947 2.288

400× 400 cells
4 15.571 1.627
8 15.423 1.687
16 15.283 1.801
32 15.764 1.992
64 16.934 3.195

800× 800 cells
4 58.694 1.821
8 57.970 1.965
16 58.803 2.137
32 59.546 2.624
64 60.123 7.406

1600× 1600 cells
4 250.184 2.566
8 249.261 2.910
16 251.396 3.816
32 252.675 4.746
64 256.906 28.385

Table 5 – Computation times using the function mat_cost_dist with options method ="gdistance" or method
="java". A random raster is created with four equiprobable cell classes with costs of 1, 10, 100 and 1000. Points are
chosen randomly on these raster surfaces and a pairwise matrix of cost distances between these points is computed.
Every combination of raster size, number of points and method is randomly simulated 10 times. Mean computation

times in seconds are indicated for each method. The lowest times for each combination are displayed in bold.
Computations were performed on 1 core of a personal computer (Lenovo, Windows 10 Pro, Intel Xeon CPU 2 GHz, 8

Go RAM, 64 bits)
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Annexe A5

Assessing the influence of the amount of
reachable habitat on genetic structure using
landscape and genetic graphs

Abstract
Genetic structure, i.e. intra-population genetic diversity and inter-population genetic differentiation, is influenced by the

amount and spatial configuration of habitat. Measuring the amount of reachable habitat (ARH) makes it possible to describe
habitat patterns by considering intra-patch and inter-patch connectivity, dispersal capacities and matrix resistance. Comple-
mentary ARH metrics computed under various resistance scenarios are expected to reflect both drift and gene flow influence
on genetic structure. Using an empirical genetic dataset concerning the large marsh grasshopper (Stethophyma grossum), we
tested whether ARH metrics are good predictors of genetic structure. We further investigated (i) how the components of
the ARH influence genetic structure and (ii) which resistance scenario best explains these relationships. We computed local
genetic diversity and genetic differentiation indices in genetic graphs, and ARH metrics in the unified and flexible framework
offered by landscape graphs, and we tested the relationships between these variables. ARH metrics were relevant predictors
of the two components of genetic structure, providing an advantage over commonly used habitat metrics. Although allelic
richness was significantly explained by three complementary ARH metrics in the best PLS regression model, private allelic
richness and MIW indices were essentially related with the ARH measured outside the focal patch. Considering several matrix
resistance scenarios was also key for explaining the different genetic responses. We thus call for further use of ARH metrics in
landscape genetics to explain the influence of habitat patterns on the different components of genetic structure.

Keywords : landscape genetics, genetic structure, amount of reachable habitat, graph theory

Cet article est en voie d’être re-soumis après modifications au journal Heredity :

Savary, P., Foltête, J. C., van Strien, M.J., Moal, H., Vuidel, G. & Garnier, S. Assessing the influence of the amount of

reachable habitat on genetic structure using landscape and genetic graphs. In correction for Heredity
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1 Introduction

The genetic structure of populations of the same species occupying subdivided habitat patches
is characterised by two components : (i) the local genetic diversity within each population and (ii)
the genetic differentiation between populations. Genetic drift and gene flow are the main processes
influencing these two components when assessed from neutral genetic markers (Hedrick, 2011). Their
combined effects depend on the habitat spatial pattern, i.e. the area and the configuration of habitat
patches (DiLeo et Wagner, 2016 ; Keyghobadi, 2007). Indeed, on the one hand, when the effective
size of a population is limited by the small area or poor quality of a habitat patch, genetic drift tends
to erode its local genetic diversity (Frankham et al., 2004), thereby increasing the risk of inbreeding
depression and local extinction (Frankham, 2005 ; Spielman et al., 2004). It also increases its genetic
differentiation from other populations. On the other hand, if there are other habitat patches within
dispersal distance, gene flow events due to dispersal from neighbouring populations can counterba-
lance this loss of local genetic diversity while limiting genetic differentiation between populations
(Frankham, 2015 ; Lehnen et al., 2021 ; Ingvarsson, 2001). Understanding precisely how these two
components of the genetic structure are influenced by the habitat spatial pattern is crucial in an era
when habitat destruction is globally threatening all biodiversity levels (Díaz et al., 2019).

Describing the spatial pattern of habitat implies taking into account both habitat amount and
configuration (Villard et Metzger, 2014), which are largely interdependent (Didham et al., 2012 ;
Saura, 2021). For a given amount of habitat in the landscape, the configuration of habitat patches
determines how much habitat is reachable from every patch (Saura, 2021 ; Villard et Metzger, 2014).
The concept of habitat reachability integrates both habitat amount and configuration and extends that
of habitat connectivity by considering both intra-patch and inter-patch connectivity (Pascual-Hortal
et Saura, 2006 ; Saura et Rubio, 2010). The Amount of Reachable Habitat (ARH) computed for a
patch is made of the area of the patch itself, and of the areas of its neighbouring patches according
to species dispersal capacities. In addition, a patch may contribute to the ARH at a large scale by
allowing "stepping-stone" dispersal over several generations between patches that are very distant from
each other (Saura et al., 2014). To account for the latter situation when computing the ARH for a
patch, one must consider the topology of the whole habitat network because it determines the role of
that patch for indirect connections between distant patches (Saura et Rubio, 2010). Besides, as soon
as the ARH includes habitat areas outside the focal patch, it should best include the resistance exerted
by the landscape matrix on individual movements between patches (Andersson et Bodin, 2009 ; Joly
et al., 2014). In sum, computing a set of complementary metrics makes it possible to measure the
ARH from the species point of view and according to its dispersal capacities through the landscape
matrix over large spatial scales and multiple generations (Saura et de la Fuente, 2017).

ARH metrics have been developed from landscape graphs, which represent habitat networks as sets
of habitat patches (nodes) connected by potential dispersal paths (links) (Galpern et al., 2011 ; Saura
et de la Fuente, 2017 ; Urban et Keitt, 2001). These graphs offer a unified framework for the com-
putation of complementary habitat metrics in a more flexible way than commonly used metrics such
as the distance to the nearest patch or the amount of habitat in a circular buffer area (see Figure 23
for background information on habitat metrics). Accordingly, ARH metrics have proven helpful for
explaining biological responses such as the composition of species communities (Awade et al., 2012 ;
Mony et al., 2018) and are commonly used for conservation purposes (Bergès et al., 2020 ; Saura et
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de la Fuente, 2017). They have more rarely been used to explain the genetic structure of populations
despite their potential relationships with both genetic drift and gene flow processes (but see Bertin
et al. (2017), Flavenot et al. (2015) and Schoville et al. (2018)). Three metrics can be sufficient for
describing the habitat pattern properties determining the ARH (Baranyi et al., 2011 ; Rayfield et al.,
2011). These metrics should reflect the potential size of the population occupying a patch and the
contribution of a patch to dispersal fluxes and to long-distance dispersal events occurring through
multiple generations over the whole habitat network. These properties have been named recruitment,
flux and traversability by Urban et Keitt (2001), respectively.

In population genetics, the potential advantage of ARH metrics over other habitat metrics lies
on the following rationale. Genetic drift depends on population size, which can be approximated by
the capacity of a patch (i.e. recruitment component of the ARH, Figure 23C). Besides, even if every
suitable habitat patch in the landscape may not be systemically occupied by a population (Pasinelli
et al., 2013), we can expect gene flow intensity between a given population and the others to increase
with the flux component of the ARH. For a given patch, this component is measured by considering
the potential connections to other habitat patches (e.g. with the F metric, Figure 23D). Finally, the re-
lative location of a patch in the topology of the whole network, taken into account in the traversability
component of the ARH, is known to be a good predictor of multi-generational gene flow (Boulanger
et al., 2020 ; Van Strien et al., 2014 ; Van Strien, 2017)(as reflected for example by the Betweenness
Centrality (BC) metric, Figure 23E). In contrast, while the distance to the nearest patch may only
partially reflect the contribution of a patch to gene flow events (Figure 23A), the amount of habitat in
a buffer area (Figure 23B) may not allow for distinguishing the effect of the habitat pattern on drift
versus gene flow processes.

The most frequent landscape genetic analyses focus on the relationship between genetic and land-
scape distances between patches (link-level, sensu Wagner et Fortin (2013)) to test for the effect
of landscape structure on genetic differentiation (DiLeo et Wagner, 2016). In contrast, landscape
influence on local genetic diversity or population-specific indices of genetic differentiation (node- or
neighbourhood-level analyses, sensu Wagner et Fortin (2013)) have rarely been studied (DiLeo et Wag-
ner, 2016) (see Barr et al. (2015), Millette et Keyghobadi (2015) or Toma et al. (2015) for examples).
In addition, genetic diversity estimates tend to be taken as a result of genetic drift in empirical studies,
while genetic differentiation is mainly explained by levels of gene flow. However, genetic diversity and
differentiation are both influenced by the interaction of drift and gene flow. Furthermore, node-based
studies mostly focus on either genetic diversity or differentiation (Flavenot et al., 2015 ; Toma et al.,
2015) and consider simple habitat metrics such as habitat amount in circular neighbourhoods around
populations and distances to nearest habitat patches (Hahn et al., 2013 ; Taylor et Hoffman, 2014).
Because ARH metrics comprehensively reflect the drivers of both drift and gene flow, they could be
relevant predictors of both genetic diversity and differentiation (Foltête et al., 2020). This would help
understanding how each response is influenced by the habitat spatial pattern. Computing ARH me-
trics under different matrix resistance scenarios additionally offers the opportunity to assess the role
of matrix resistance in these relationships.

ARH metrics are even more relevant for landscape genetics since the genetic structure of a set
of populations can also be represented as a genetic graph in which nodes are sampled populations
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whereas links are weighted by genetic distances and represent substantial gene exchanges between
populations (Dyer, 2015b ; Greenbaum et Fefferman, 2017 ; Savary et al., 2021a). Their nodes can be
weighted by local genetic diversity indices (node-level) as well as indices considering genetic differentia-
tion with other populations (neighbourhood-level)(Koen et al., 2016). In the latter case, the topology
of the population network can be taken into account through graph pruning, which removes certain
links between populations. It makes it possible to consider gene exchanges at different spatial scales
when computing these genetic differentiation indices (Savary et al., 2021a). As evidenced by DiLeo et
Wagner (2016), node- and neighbourhood-level approaches are the only landscape genetic approaches
making it possible to study the relationships between (i) either genetic diversity or differentiation and
(ii) either habitat amount or configuration.

Accordingly, in this study, we aimed at answering the following question : are ARH metrics better
predictors of genetic structure than commonly used habitat metrics ? To that purpose, we used an
empirical genetic dataset concerning the large marsh grasshopper (Stethophyma grossum). This species
has limited dispersal capacities and forms discrete populations in small habitat patches, making it a
good model for understanding how the spatial patterns of habitat influence genetic structure. We
computed local genetic diversity and genetic differentiation indices from genetic graphs. In parallel,
we computed three ARH metrics (capacity, F, BC) at different scales in landscape graphs, while
taking into account different matrix resistance scenarios. We also computed the distance to the nearest
neighbouring patch (DistNN hereafter) and the amount of habitat in a circular buffer (buffer metric
hereafter), two commonly used habitat metrics, for comparison purposes. We finally assessed the
relationships between these genetic responses and landscape predictors through correlation analyses
as well as partial least square regressions. These analyses also allowed us to compare the relationship
between ARH metrics and either genetic diversity or differentiation, and the way the spatial scale and
the resistance scenario influenced it.
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Figure 23 – Differences between common habitat metrics computed from a land cover map (A, B) and ARH metrics
computed from a landscape graph (C, D, E). Grey areas correspond to habitat. The table (F) illustrates these

differences by considering the metrics computed for three habitat patches (a, b, c). (A) The distance to the nearest
habitat patch (DistNN) is computed for each habitat patch. (B) The amount of habitat in a circular buffer (so-called
’buffer’ metric) is computed as the area of the pixels located within the black circle centered on each patch centroid.

(C) The capacity is the area of each patch (node) of the landscape graph. (D) The Flux metric for patch i is the sum of
the area of all the habitat patches j of the graph weighted by the dispersal probability between i and every patch j. (E)

The Betweenness Centrality metric corresponds to the number of times every patch is located on a least cost path
between two other patches of the graph, weighted by the product of the connected patch areas and the dispersal

probability between them. Brown lines on panels C, D and E correspond to landscape graph links.

2 Material & Methods

2.1 Study species and sampling area

We analysed an empirical dataset acquired and described by Keller et al. (2013) and Van Strien
et al. (2014). The large marsh grasshopper (Stethophyma grossum) is a specialist orthoptera species
exhibiting a patchy distribution throughout most of Europe where it finds its habitat in periodically
flooded grasslands and open wetlands (Bönsel et Sonneck, 2011 ; Reinhardt et al., 2005 ; Sonneck
et al., 2008). In this species, dispersal seems possible even in suboptimal open areas such as dry grass-
lands (Marzelli, 1994) and the species is able to cross streams but suitable patches surrounded by
trees cannot be reached (Reinhardt et al., 2005). Exceptionally, individuals can cover up to 1500 m,
as observed by Griffioen (1996) in a permeable landscape.
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Figure 24 – Location of the sampled populations in the surroundings of Langental in the Oberaargau region.

Keller et al. (2013) modelled the potential habitat of the large marsh grasshopper in the surroun-
dings of the city of Langenthal in the Oberaargau region of the Swiss plateau. This 180 km2 area is
characterised by intensive agriculture areas with forest patches and settlements. Across the potential
habitat areas, thirty-nine large marsh grasshopper populations were sampled exhaustively (Figure 24)
in July and August 2010. The tibia and tarsus of a mid-leg of each individual were sampled for genetic
data analyses.

The genetic data analyses of eight microsatellite markers are described in Keller et al. (2013). Like
those authors, we excluded the Sgr14 microsatellite marker from the analyses because of genotyping
errors and high null allele frequency. This did not prevent us from detecting significant levels of genetic
differentiation. Besides, we excluded two populations located on the eastern margin of the study area,
as well as three other populations whose low numbers of individuals would have impaired our rarefied
estimations of local genetic diversity (see below). In sum, we considered 34 populations with at least
12 individuals for a total of 886 individuals.

2.2 Genetic structure indices

At the intra-population level, we estimated the total (ar) and private (Priv. ar) allelic richness
from rarefaction indices calculated using adze (Szpiech et al., 2008) to account for sample size dif-
ferences. Note that the private allelic richness index indicates the number of alleles found in a given
population while absent from all the others (Kalinowski, 2004). Thus, it can be considered as both a
local genetic diversity index and a genetic differentiation index. For assessing genetic differentiation
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between pairs of populations, we computed the matrix of DPS (calculated as 1 - pairwise proportion
of shared alleles)(Bowcock et al., 1994). This distance has been shown to respond quickly to recent
landscape changes, making it relevant for estimating contemporary gene flow in landscape genetic
analyses (Murphy et al., 2010b). We also computed the matrix of pairwise FST (Weir et Cockerham,
1984), which is known to reflect historical gene flow (Latta, 2006 ; Murphy et al., 2010b).

We then built genetic graphs whose nodes represented grasshopper populations. Links were weigh-
ted with either DPS or FST values. In the complete graphs, every population was connected to every
other population but we also created pruned graphs in which only a subset of links was included. In
order to avoid any artefactual correlation between habitat metrics and graph-based genetic indices, we
used a pruning method taking only genetic distances into account. To that purpose, we identified the
so-called "percolation threshold" using an edge-thinning method (Urban et Keitt, 2001). Following Ro-
zenfeld et al. (2008), we computed this threshold from genetic data, searching for the genetic distance
associated with the graph link whose removal would break the graph into two components. All the
links corresponding to genetic distances larger than this threshold were removed. Gene flow has been
shown to be frequent but spatially limited in this area (Keller et al., 2013) and we therefore assumed
that above this genetic threshold distance, genetic differentiation between populations poorly reflected
landscape effects on gene flow. From these graphs, we computed the mean of the inverse weight of
the links connected to each node (thereafter referred to as MIW-DPS and MIW-FST according to the
genetic distance used). High values of MIW indicate a high degree of genetic similarity of a population
with the others. This metric has been shown to correlate well with the number of migrants (Koen
et al., 2016) and other population-specific genetic differentiation indices have already been recom-
mended and used for landscape genetic analyses (DiLeo et Wagner, 2016 ; Gaggiotti et Foll, 2010 ;
Millette et Keyghobadi, 2015 ; Peterman et al., 2015). Genetic graphs were constructed and metrics
were computed using the graph4lg package in R (Savary et al., 2021b).

2.3 Habitat metric calculations

We used rasterised (resolution : 10 m) land cover data from the sampling year in the area en-
compassing buffers of 5 km radius around each sampling site. In this area, we described the habitat
spatial pattern by computing three ARH metrics (capacity, F, BC) from a landscape graph (Figure 25).

2.3.1 Landscape graph construction

We considered six land cover types : (i) potential habitat areas, (ii) forest areas, (iii) settlements,
(iv) agricultural areas, (v) wetlands and water areas, and (vi) railways and roads. Potential habitat
areas corresponded to areas close to open water (<= 500 m), within open agricultural areas and where
water from the surroundings (500 m radius) can accumulate (Keller et al., 2013). We created a resis-
tance surface by combining these land cover data. The sampling of Keller et al. (2013) was exhaustive
within the modelled potential habitat. Therefore, we built landscape graphs whose nodes were the 37
sampling sites in which several individuals were observed. The terms nodes, patches and populations
are used interchangeably here. We used the resistance surface for computing the cost-distances bet-
ween the nodes, which were used to weight the graph links.
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Figure 25 – Genetic indices and habitat metrics computed in both types of graphs to depict both genetic structure
(diversity, differentiation) and the amount of reachable habitat and to perform correlation and partial least squares
analyses. "Prun." : pruned graph, "Comp." : complete graph, "Cost dist." : cost-distances, "Euc. dist." : Euclidean

distances

We distinguished several "expert-based" scenarios of landscape matrix resistance when assigning
a cost value to every land cover type on the resistance surface. In the first four scenarios, we set the
cost values as indicated in table 6. With these four scenarios, we varied the influence of wetlands and
water areas (cost values : 50 or 1000, W50 and W1000 respectively) and of the roads and railways
(cost values : 50 or 1000, R50 and R1000 respectively) because we wanted to test for the respective
influence of these potential linear barriers on gene flow. Cost values associated with other land cover
types were set assuming that this species moves easily in potential habitat areas or open areas, whereas
it is hardly able to move across forests and anthropogenic areas (Bönsel et Sonneck, 2011 ; Griffioen,
1996 ; Marzelli, 1994).

Table 6 – Scenarios of matrix resistance considered for computing cost-distances between habitat patches

Scenario Potential
habitat

Forest Settlements Agricultural
areas

Wetlands,
water

Roads,
railways

W50-R50 1 1000 1000 50 50 50
W1000-R50 1 1000 1000 50 1000 50
W50-R1000 1 1000 1000 50 50 1000
W1000-R1000 1 1000 1000 50 1000 1000

We computed the least cost paths between every pair of habitat patches using Dijkstra’s algorithm
and weighted the links with the corresponding cost distances. In a fifth scenario, we built a graph
whose link weights were geodesic Euclidean distances between patches. As this species is assumed to
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disperse by stepping stones given its limited dispersal capacities, for every resistance scenario, the
landscape graphs were pruned with a Delaunay triangulation resulting in a planar graph (Figure 24).

2.3.2 Amount of reachable habitat metrics

To account for the influence of the ARH on genetic drift and gene flow, we took advantage of
the spatial graph approach for computing three complementary ARH metrics. The graph nodes were
located at the centroid pixel of every sampled habitat patch and we first computed their capacity as
the area of potential habitat reachable at the patch scale. To that end, we assigned to every potential
habitat cell surrounding the central pixel of the sampling site a weight that decreases with its cost-
distance to this pixel. The weight of the potential habitat cell j located at a cost-distance dij from
the central pixel of site i is equal to e−αdij , such that the Capacityi of patch i is equal to :

Capacity i =
N∑
j=1

e−αdij

where N is the total number of potential habitat cells. We set α values such that p = e−αdij = 0.05
at a cost-distance equivalent to 1500 m from the sampling site centroid, because distance-weighting
exponential functions assuming that landscape effects on biological responses progressively decay with
distance have been shown to outperform weighting functions based on fixed distance thresholds (Mi-
guet et al., 2017). We converted this geodesic metric distance into cost-distance units using a log-log
regression, following Tournant et al. (2013). After performing the same calculations for distances of
500 and 1000 m with very similar results, we retained 1500 m as the best scale because it is in the
same order of magnitude as the maximum dispersal capacity of the species. Given that the large
marsh grasshopper occupies small localised habitat patches, this metric reflects the amount of habitat
reachable by individuals at the scale of the discrete patch occupied by their population. It is thus a
suitable proxy for the effective population size driving genetic drift (DiLeo et Wagner, 2016). It was
computed for each resistance surface and cost scenario.

As the capacity reflects the intra-patch component of the ARH, we computed two other metrics
reflecting the ARH due to other patches :

— The Flux metric (F) represents the amount of habitat that is reachable when dispersing from a
focal patch to other habitat patches. It can also be thought of as the amount of habitat from
which migrants can originate. We computed the F using the following formula :

Fi =
n∑

j=1;j 6=i
Capacityβje

−αdij

with i the index of the focal patch and j the index of all the other n patches, dij the distances
(cost-distance or geodesic Euclidean distance) between patches i and j, Capacity j is the capacity
of patch j and β indicates whether the patch capacity is taken into account (β = 1) or not
(β = 0) in the calculation. Note that when β = 0, the F metric is essentially a topological
metric reflecting the influence of the number and proximity of patches that are reachable. α was
computed according to different dispersal kernels in order to test for the influence of the scale
at which dispersal takes place. To that purpose, we set α values such that p = e−αdij = 0.05 for
distances dij ranging from 1500 to 7500 m (with steps of 500 m). We thereby considered the ARH
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beyond the scale at which patch capacities were computed and until large scales as compared
with the species dispersal capacities. For the sake of brevity, we refer to these distances dij at
which pdij = 0.05, either cost-distances or geodesic distances, as maximum dispersal distances
(MDD) and express them in equivalent metric units after conversion.

— The Betweenness Centrality metric (BC) represents the number of times a focal patch (node/population)
is a step on the indirect least cost path from one patch to another when considering all pos-
sible patch pairs, excluding pairs involving the focal patch itself. It therefore reflects the role
of that patch for potential dispersal movements at the scale of the whole habitat network and
across several generations (traversability). Each term of this metric is weighted by the product of
connected patch capacities (if β = 1) and dispersal probabilities associated with the inter-patch
distance such that :

BCi =
∑
j

∑
k

CapacityβjCapacity
β
ke
−αdjk

j, k ∈ {1, . . . , n} , k < j, i ∈ Pjk

where Pjk represents the set of patches that are located along the least cost path between patches
j and k. We used the same α and β values as for the F index.

Because patches with large BC values may play a key role for dispersal between a large number of
habitat patches (β = 0) and/or a great amount of habitat areas (β = 1), populations occupying
these patches are expected to be genetically similar to the others and to have a high genetic
diversity (Zetterberg et al., 2010).

As these three ARH metrics are complementary and make it possible to cover a large range of
calculation parameters, other habitat metrics found in the literature (Capurucho et al., 2013 ; Peterman
et al., 2015 ; Taylor et Hoffman, 2014) are particular cases of these metrics. Thus, although we aimed at
assessing the relevance of the unified and flexible framework of the ARH metrics, we computed buffer
metrics and the DistNN, two other habitat metrics, for comparative purposes. We first computed the
buffer metrics, which measure the amount of potential habitat in circular neighbourhoods around each
sampling sites considering similar scales as for the ARH metrics calculation. When considering small
radius (from 100 to 500 m with steps of 100 m), "local buffer" metrics were akin to the capacity metric
whereas "large buffer" metrics (from 1000 to 5000 m with steps of 500 m) more closely reflected the F
metric calculation. We also computed the amount of potential habitat in non-circular neighbourhoods
whose radius depended on cost-distance values according to every cost scenario. We use the terms
"Local.Buffer" and "Large.Buffer" hereafter. In the Euclidean resistance scenario, the buffer is circular,
and non-circular in the other scenarios. Finally, we computed the distance from each population to
the nearest neighbour habitat patch occupied by a sampled population (DistNN) under every cost
scenario. We built landscape graphs and computed metrics using Graphab 2.4 software (Foltête et al.,
2012a).

2.4 Analyses of the relationship between habitat metrics and genetic structure
indices

92



2.4.1 Correlation analyses

We first assessed the correlations between the habitat metrics and the genetic indices (Figure 25).
Because all these variables were not normally distributed, we computed the Spearman rank correlation
coefficient and tested for the significance of the correlations. We adjusted the p-values using the
Benjamini et Hochberg (1995) method to control for the False Discovery Rate.

2.4.2 Partial Least Squares regressions

Simple correlation analyses allowed us to identify the habitat metrics, spatial scales and matrix
resistance scenarios most strongly related with each genetic response. However, they could not depict
the complex relationships between genetic indices and our set of complementary ARH metrics. We
therefore carried out Partial Least Squares regressions (PLS-R)(Carrascal et al., 2009) in which genetic
indices were the response variables whilst ARH metrics were the predictor variables (Figure 25). PLS
regressions are an alternative to multiple linear regression and principal component regression (Roy
et al., 2015 ; Wold et al., 2001), particularly adapted when predictor variables are collinear. The main
difference with Principal Component Regression is that both the response and predictor variables are
considered for creating a factorial space (Long, 2013). Response variables were rank-transformed be-
cause of departures from normal distributions. We assessed the complementarity of the ARH metrics
through multivariate analyses, by testing for all combinations of three predictor variables involving a
patch capacity, F and BC metric.

Following Tenenhaus (1998), we computed the Q2 index to assess the role of every component
in improving the prediction of the response variable when performing leave-one-out cross-validation.
We only described the results obtained with models in which at least one component significantly
improved the prediction of the response variable, i.e. when the Q2 associated with this component is
larger than 0.0975 (Supplementary information 2). We compared these models according to the Q2

values associated with their significant components. Variable influences were assessed by computing
their squared weights on the significant components. Variable weights were validated through bootstrap
procedures following Pérez-Rodríguez et al. (2018). For every top model, the dataset was sampled with
replacement 1000 times and the variable weights were estimated. If the 2.5-97.5 % interval of the series
of obtained values did not overlap zero, then we considered that the variable contributed significantly
to the construction of the component.

3 Results

3.1 Landscape and genetic graphs

The planar landscape graphs included 37 nodes and 95 links (Figure 24) and the complete genetic
graphs included 34 nodes connected by 561 links. The genetic graphs pruned using percolation thre-
sholds computed from DPS or FST values both included 412 links, although they had slightly different
topologies (Figure 27).

3.2 Correlations between ARH metrics and genetic responses

The DistNN metric never significantly correlated with any genetic index (Table 7). Although the
Local.Buffer metric consistently exhibited positive correlations with genetic indices (up to r = 0.347
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with allelic richness), this correlation was never significant. Besides, the Large.Buffer metric was only
significantly correlated to the allelic richness when considering a radius equivalent to 1000 m or 4500
m in the cost scenarios assigning water areas a low resistance (W50-R1000 : r = 0.482 and W50-R50 :
r = 0.432, respectively). Overall, these commonly used habitat metrics performed poorly as compared
with ARH metrics derived from landscape graphs.

Allelic richness was positively correlated with patch capacity (r = 0.447). This correlation was
only significant when the capacity was computed under the cost scenario assigning a low resistance to
water areas and a high resistance to roads and railways (W50-R1000). Thus, the local genetic diversity
of a population is greater when this population occupies a patch with a large habitat surface reachable
without crossing roads or railways. In contrast, patch capacities were not significantly correlated with
any index of private allelic richness or relative genetic differentiation (MIW) derived from the genetic
graphs, whatever the genetic distance and graph topology considered in the calculation.

All genetic indices tended to correlate more strongly with the Flux (F) metrics than they did with
the Betweenness Centrality (BC) metrics (Table 7). Allelic richness and private allelic richness were
respectively positively and negatively correlated with both metrics (Figures 28 and 29). While allelic
richness was more strongly correlated with the F metric computed considering cost-distances, espe-
cially when assigning roads and railways a high resistance (W50-R1000 : r = 0.538 or r = 0.566 when
MDD = 1500 and β = 0 or β = 1 respectively, Table 7), private allelic richness was more strongly
correlated with this metric when computed using Euclidean distances (r = −0.609 or r = −0.593
when MDD = 5500 or 2500 and β = 0 or β = 1, respectively, Table 7). The MDD did not have much
influence on the correlation coefficients (Figure 28) and we could not identify a scale of effect. Overall,
the correlation values depended only slightly on the weight given to patch capacities (β value) when
computing the metrics.

The MIW indices were positively and most often significantly correlated with the F and BC
metrics (Table 7), indicating that populations located in habitat patches surrounded by large and
nearby habitat patches tended to be genetically more similar to others than populations located in
habitat patches isolated from large habitat patches (Figure 26). Overall, the correlations were stronger
when computing the MIW indices from pruned graphs rather than from complete graphs (Table 7).
This was especially apparent when using the DPS to weight the genetic graph links. However, these
correlations were influenced by both the genetic distance used in the calculation and the type of
distances (geodesic or cost-distances) used to compute the F and BC metrics. MIW-DPS indices were
more strongly correlated with F metrics computed using Euclidean distances whereas MIW-FST indices
were more strongly correlated with F metrics computed using cost-distances under the scenarios W50-
R50 or W50-R1000 which both assign a low resistance to water areas (Figure 26). In both cases,
correlation coefficients reached their highest values when the MDD was between 2000 and 3000 m.

3.3 Partial Least Squares regressions

Among all combinations of capacity, F and BC metrics, only one component had a significant effect
in the PLS-R models explaining one of the genetic indices, except in one case where two components
significantly explained the MIW-DPS derived from a pruned graph. Among these combinations, the
best models were very similar for a given response variable. Overall, the best model fits were obtained
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Table 7 – Spearman correlation coefficients between genetic indices and ARH metrics according to the cost scenario
used, the MDD considered and the weight given to patch capacities in the metric calculation (β value). The largest
correlation coefficient obtained for each genetic index, habitat metric and β value are displayed. The ’Signif.’ column

indicates whether the correlation is still significant after p-value adjustment (* : p < 0.05, ** : p < 0.01, *** :
p < 0.001). For the cost scenarios, refer to the table 6. ’DistNN’ means ’Distance to the Nearest Neighbour’.

Genetic in-
dex

Habitat metric Correlation

Metric Cost sc. MDD β rSpearman Signif.
ar Capacity w50-r1000 1500 ∅ 0.447 *
ar Local.Buffer Euc. 200 ∅ 0.347
ar DistNN w50-r1000 ∅ ∅ -0.057
ar F w50-r1000 1500 0 0.538 *
ar F w50-r1000 1500 1 0.566 *
ar Large.Buffer w50-r1000 1000 ∅ 0.482 *
ar BC w1000-r1000 7500 0 0.382
ar BC w1000-r1000 7500 1 0.387
Priv. ar Capacity w50-r1000 1500 ∅ 0.238
Priv. ar Local.Buffer w50-r1000 300 ∅ 0.289
Priv. ar DistNN w50-r50 ∅ ∅ -0.181
Priv. ar F Euc. 5500 0 -0.609 **
Priv. ar F Euc. 2500 1 -0.593 **
Priv. ar Large.Buffer w50-r1000 2000 ∅ 0.391
Priv. ar BC Euc. 3000 0 -0.437 *
Priv. ar BC Euc. 1500 1 -0.387
miwcomp.dps Capacity w50-r1000 1500 ∅ 0.203
miwcomp.dps Local.Buffer w50-r50 500 ∅ 0.274
miwcomp.dps DistNN w50-r50 ∅ ∅ 0.126
miwcomp.dps F Euc. 3000 0 0.500 *
miwcomp.dps F Euc. 3500 1 0.467 *
miwcomp.dps Large.Buffer Euc. 5000 ∅ -0.348
miwcomp.dps BC Euc. 1500 0 0.380
miwcomp.dps BC Euc. 1500 1 0.335
miwprun.dps Capacity w50-r1000 1500 ∅ 0.176
miwprun.dps Local.Buffer w50-r50 500 ∅ 0.279
miwprun.dps DistNN w50-r50 ∅ ∅ 0.113
miwprun.dps F Euc. 3000 0 0.632 **
miwprun.dps F Euc. 3500 1 0.597 **
miwprun.dps Large.Buffer Euc. 5000 ∅ -0.356
miwprun.dps BC Euc. 1500 0 0.453 *
miwprun.dps BC Euc. 1500 1 0.411
miwcomp.fst Capacity w50-r1000 1500 ∅ 0.329
miwcomp.fst Local.Buffer w50-r50 500 ∅ 0.303
miwcomp.fst DistNN Euc. ∅ ∅ -0.053
miwcomp.fst F w50-r50 3000 0 0.663 **
miwcomp.fst F w50-r50 1500 1 0.602 **
miwcomp.fst Large.Buffer w50-r1000 1000 ∅ 0.370
miwcomp.fst BC w50-r1000 7000 0 0.472 *
miwcomp.fst BC w1000-r1000 1500 1 0.441 *
miwprun.fst Capacity w50-r1000 1500 ∅ 0.327
miwprun.fst Local.Buffer w50-r50 500 ∅ 0.310
miwprun.fst DistNN w1000-r1000 ∅ ∅ 0.059
miwprun.fst F w50-r50 2000 0 0.686 **
miwprun.fst F w50-r50 1500 1 0.624 **
miwprun.fst Large.Buffer w50-r1000 1000 ∅ 0.358
miwprun.fst BC w50-r1000 7000 0 0.507 *
miwprun.fst BC w1000-r1000 1500 1 0.454 *
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Figure 26 – Variation of the Spearman correlation coefficients between the relative genetic differentiation index MIW
computed from the pruned genetic graphs and the F metric according to the genetic distance, cost scenarios and

dispersal kernels used to compute these indices. The x axis indicates the dispersal kernels used to compute the metrics
and corresponds to the MDD (maximum dispersal distances). In this figure, the F metric was computed without

weighting patch capacities (β = 0). Point colours refer to the cost scenario used to compute cost-distances (see Table 6).
The left and right panels display the variations observed when computing MIW from a genetic graph weighted with
DPS and FST values respectively. Crosses indicate that the correlation is not significant after p-value adjustment.

when patch capacities were not included in the calculation of the F metric (β = 0) and, except for
the MIW-FST, included for the calculation of the BC metric (β = 1). Yet, these differences were most
often subtle (Table 8). Accordingly, we only describe the results of the best models created with each
response variable (Table 8).
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Table 8 – Results of the Partial Least Squares regression (PLS-R) of the genetic indices by the capacity, flux and betweenness centrality metrics. For each genetic index and patch
capacity weighting parameter for computing F and BC (β value), the best model according to the Q2 associated with the first PLS component (Q2.t1) is displayed (largest Q2 value
for each genetic index displayed in italics). When β is equal to 1, patch capacities are included in the metric calculation and not otherwise (β = 0). MDD indicates the distance at
which the dispersal probability is set to 0.05 for the metric calculation. For the cost scenarios, refer to table 6. The r.t1 column gives the Pearson correlation coefficient between the
PLS components t1 and the habitat metrics. These values are displayed in bold when the metrics significantly contribute to the construction of the PLS components. R2.t1 and

Q2.t1 values associated with the first component respectively indicate the proportion of the response variable variance and the cross-validated proportion of this variance explained
by each PLS component. Q2 values above 0.0975 indicate that the PLS component has a significant effect on the response variable and are displayed in bold. Q2.t2 values associated

with the second component are also displayed for information purposes. miwcomp.dps and miwprun.dps refer to the MIW-DPS computed from complete and pruned genetic graphs
respectively (similar notation for the MIW-FST).

Capacity F BC Model fit
Gen. index Cost sc. r.t1 β MDD Cost sc. r.t1 β MDD Cost sc. r.t1 Q2.t1 R2.t1 Q2.t2
ar w50-r1000 0.848 0 2000 w50-r1000 0.885 0 1500 w1000-r50 0.331 0.273 0.326 -0.035
ar w50-r1000 0.829 0 2000 w50-r1000 0.860 1 7500 w1000-r1000 0.787 0.280 0.325 -0.098
ar w50-r1000 0.847 1 2000 w50-r1000 0.916 0 5500 w1000-r1000 0.870 0.214 0.246 -0.095
ar w50-r1000 0.860 1 2000 w50-r1000 0.880 1 7500 w1000-r1000 0.807 0.230 0.270 -0.136
Priv. ar w50-r1000 0.201 0 1500 Euclid. -0.947 0 5500 w1000-r1000 -0.396 0.317 0.443 -0.003
Priv. ar w50-r1000 0.427 0 2500 Euclid. -0.813 1 6000 w1000-r1000 0.160 0.411 0.511 -0.147
Priv. ar w50-r1000 0.221 1 2000 Euclid. -0.943 0 7000 w1000-r1000 -0.385 0.309 0.437 -0.006
Priv. ar w50-r1000 0.448 1 2500 Euclid. -0.790 1 7000 w1000-r1000 0.182 0.410 0.508 -0.141
miwcomp.dps w1000-r50 -0.216 0 4000 Euclid. 0.952 0 2500 Euclid. 0.880 0.148 0.217 -0.076
miwcomp.dps w50-r1000 0.390 0 4500 Euclid. 0.929 1 6500 w1000-r1000 0.492 0.178 0.291 0.063
miwcomp.dps w1000-r50 -0.178 1 2500 Euclid. 0.927 0 3500 Euclid. 0.905 0.110 0.182 -0.077
miwcomp.dps w50-r1000 0.491 1 3500 Euclid. 0.904 1 5500 w1000-r1000 0.542 0.098 0.211 0.025
miwprun.dps w1000-r50 -0.131 0 3000 Euclid. 0.958 0 2000 Euclid. 0.901 0.312 0.366 -0.081
miwprun.dps w50-r1000 0.284 0 3500 Euclid. 0.974 1 7500 w1000-r1000 0.477 0.314 0.394 0.101
miwprun.dps w1000-r50 -0.093 1 3000 Euclid. 0.938 0 1500 Euclid. 0.899 0.270 0.325 -0.077
miwprun.dps w1000-r50 -0.084 1 3500 Euclid. 0.947 1 1500 Euclid. 0.891 0.241 0.303 -0.065
miwcomp.fst w1000-r50 0.117 0 2000 w50-r1000 0.969 0 3500 Euclid. 0.618 0.381 0.445 -0.115
miwcomp.fst w50-r1000 0.387 0 3500 Euclid. 0.942 1 2500 w1000-r50 0.091 0.355 0.448 -0.070
miwcomp.fst w1000-r50 0.228 1 2500 w50-r1000 0.974 0 3000 Euclid. 0.615 0.324 0.393 -0.091
miwcomp.fst w1000-r50 0.234 1 2500 w50-r1000 0.969 1 2000 Euclid. 0.701 0.295 0.365 -0.065
miwprun.fst w1000-r50 0.147 0 2500 w50-r1000 0.972 0 3500 Euclid. 0.643 0.443 0.504 -0.103
miwprun.fst w1000-r50 0.164 0 2500 w50-r1000 0.965 1 3000 Euclid. 0.714 0.408 0.474 -0.076
miwprun.fst w1000-r50 0.226 1 2500 w50-r1000 0.970 0 3500 Euclid. 0.633 0.368 0.436 -0.083
miwprun.fst w1000-r50 0.238 1 2500 w50-r1000 0.965 1 2500 Euclid. 0.717 0.327 0.402 -0.062
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The allelic richness was best explained when fitting a PLS-R model including the three following
ARH metrics : capacity computed under the cost scenario W50-R1000, F metric computed under the
same scenario with β = 0 and a MDD of 2000 m, and BC metric computed under the cost-scenario
W1000-R1000 with β = 1 and a MDD of 7500 m. These variables were highly and positively correlated
with the first component (Capacity : r = 0.829, F : r = 0.860, BC : r = 0.787 in the best model,
Table 8 and supplementary information 1, figure 31A). The R2 associated with this component was
equal to 0.325 in the best model, whereas the corresponding Q2 was about 0.280 (Table 8).

In contrast, the only variable contributing significantly to the first component derived from the
best PLS-R model explaining the private allelic richness was the F computed using Euclidean dis-
tances, with β = 0 and MDD of 1500 or 2000 m (Table 8). This variable was negatively correlated
with the first component (r = −0.816) indicating that private allelic richness is lower when habitat
patches are surrounded by other nearby habitat patches (Supplementary information 1, figure 31B).
Both the R2 and the Q2 values associated with this first component were larger than in the PLS-R
models explaining allelic richness (R2=0.515, Q2=0.415).

The best PLS-R models explaining the MIW indices were obtained when computing them from
pruned genetic graphs, the pruning step making the greatest differences in model fits when computing
the MIW-DPS (Table 8). Model goodness of fit was overall better when modelling the MIW-FST than
the MIW-DPS. The first component alone explained about 40 % of the variance of the MIW index
and up to 50 % when modelling the MIW-FST derived from a pruned graph (Table 8). This share was
moderately reduced when performing the cross-validation (Q2 : from 0.314 to 0.443, Table 8). Here
again, only the F contributed significantly to the first component, which was in most cases the only
component explaining significantly the MIW (Supplementary information 1, figures 31C and 31D).
While the F was computed from Euclidean distances with β = 0 and MDD of 3500 m in the best model
explaining the MIW-DPS, it was computed with cost-distances under the scenario W50-R1000 with
β = 0 and considering dispersal at a smaller scale (MDD = 2500 m) in the best model for MIW-FST

(Table 8). In all cases, the correlation between the first component of the PLS models and the F was
strong and positive (r about 0.97).

4 Discussion

We assessed the advantage of using complementary metrics measuring the amount of reachable
habitat (ARH) instead of two other commonly used habitat metrics for explaining population genetic
structure. The three ARH metrics derived from the unified and flexible framework offered by landscape
graphs, i.e. the patch capacity, Flux and Betweenness Centrality metrics, were relevant predictors of the
two components of genetic structure, i.e. genetic diversity and genetic differentiation. They provided
an advantage over the distance to the nearest neighbour patch (DistNN) and the amount of habitat in
buffer areas (Local.Buffer or Large.Buffer) that were poor predictors in this study. Besides, although
allelic richness was significantly explained by the three complementary ARH metrics in the best PLS-R
model, private allelic richness and MIW indices were essentially related with the ARHmeasured outside
the focal patch. Finally, considering several matrix resistance scenarios for computing ARH metrics
was key for evidencing that local genetic diversity seemed to be negatively influenced by transport
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infrastructures and positively by water surfaces, whereas these landscape features did not influence
genetic differentiation in the same way when measured with either the DPS or the FST.

4.1 Are ARH metrics relevant predictors of genetic structure ?

All the genetic indices describing the genetic structure of the grasshopper populations were signi-
ficantly correlated with at least one ARH metric and explained by these metrics in PLS models. In
contrast, the two habitat metrics (DistNN and buffer metrics) previously used in landscape genetic
analyses were hardly significantly correlated with the genetic indices, and in these rare cases, the
correlation was much lower. Our results therefore confirm that the three ARH metrics here consi-
dered are relevant for describing the habitat pattern driving both genetic drift (capacity) and gene
flow (Flux, BC) processes. Interestingly, our results match the results of Moilanen et Nieminen (2002)
regarding the respective performance of several habitat metrics in predicting colonisation events. Al-
though based on different biological responses, their results and ours provided similar evidence for
the poor performance of metrics considering habitat amount in neighbourhoods delineated with fixed
radius or distances to nearest patches, as compared with metrics considering dispersal probabilities to
neighbouring patches.

As the computation of ARH metrics is very flexible, they include habitat metrics already computed
in previous studies, as for example the amount of habitat in a circular neighbourhood with a radius
of 15 km, identified by Capurucho et al. (2013) as the best predictor of genetic diversity in a tropical
bird species (see Keyghobadi et al. (2005), Millette et Keyghobadi (2015) or Peterman et al. (2015) for
other examples). Using complementary ARH metrics in this and similar study could thus have pro-
vided stronger statistical relationships and complementary insights into drift and gene flow processes
driving genetic responses. In sum, although other metrics can explain genetic structure, landscape
graphs offer a unified and flexible framework for understanding the influence of habitat patterns on
genetic structure.

Including patch capacities in the calculation of the F and BC metrics only marginally influenced
our results. Therefore, the number of reachable patches in a habitat network alone was often a good
predictor of genetic structure. This recalls the results of Peterman et al. (2015) which have identified the
isolation of a patch relative to others as the best predictor of population-specific genetic differentiation
indices. Thus, the advantage of the landscape graph approach for measuring the ARH could stem from
their direct consideration of population topology, already recognised as an important driver of dispersal
and gene flow patterns (Saura et al., 2014 ; Van Strien, 2017).

4.2 Does the ARH influence genetic diversity and genetic differentiation to the
same degree and at the same spatial scale ?

It has previously been observed that genetic differentiation and local genetic diversity indices were
not influenced to the same degree and at the same spatial scale by the habitat pattern (Balkenhol
et al., 2013 ; Keyghobadi et al., 2005 ; Kierepka et al., 2020 ; Taylor et Hoffman, 2014). Our results
confirm these previous results given that we used a common statistical approach for analysing these
two components of genetic structure. On the one hand, allelic richness was significantly correlated with
both the F metric and the patch capacity and was the only genetic index significantly explained by
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the capacity in the PLS models. On the other hand, private allelic richness and MIW indices appeared
to be only related with F and BC metrics. Thus, local genetic diversity was influenced by the ARH
at the scale of the focal patch and outside that patch, whereas genetic differentiation was influenced
by the ARH outside the focal patch only. While genetic diversity and differentiation are expected to
be driven by both gene flow and drift, DiLeo et Wagner (2016) suggested that a stronger effect of
the local habitat amount on genetic diversity could stem from the close relationship between habitat
amount and population size. In contrast, the effect of the large scale habitat pattern on migration
rates seems to influence genetic differentiation more substantially than the effect of habitat area on
drift does (Cushman et al., 2012).

The relative genetic differentiation among populations was better explained by the spatial pattern
of habitats when computed from pruned genetic graphs. The relevance of graph pruning for landscape
genetic analyses has already been suggested by Wagner et Fortin (2013) for link-level analyses and
evidenced by Arnaud (2003), Angelone et al. (2011) and Savary et al. (2021a), among others. Besides,
Shirk et Cushman (2011) have highlighted the importance of considering the spatial distribution
of populations for computing genetic diversity indices in a genetic neighbourhood including several
populations. Here, we further stress the relevance of reducing the set of population pairs considered for
computing neighbourhood-level genetic indices from genetic graphs. The stronger relationship between
the ARH and the relative genetic differentiation when considering only population pairs connected
by frequent gene flow events confirms the result obtained by Keller et al. (2013) when analysing this
dataset. They showed that the relationship between genetic differentiation and geodesic distance was
positive only up to a limited spatial scale, suggesting that the large marsh grasshopper is currently
expanding. Indeed, although it has been negatively affected in the past by the reduction of wetland
and grassland areas, intensive grassland management and river control reducing periodic flooding
(Koschuh, 2004 ; Krause, 1996 ; Malkus, 1997 ; Reinhardt et al., 2005), the species has been recolonising
new areas due to wetland conservation programmes and changes in grassland management practices,
among others (Trautner et Hermann, 2008). Therefore, genetic differentiation at the scale of the entire
study area might not have reached its equilibrium level, as expected from the IBD pattern dynamics
theorised by Slatkin (1993). In this context (case-IV IBD sensu Hutchison et Templeton (1999)), the
genetic differentiation pattern is best explained when considering only a subset of nearby population
pairs, reinforcing the interest of genetic graph pruning. In summary, the spatial and temporal scales
over which drift and gene flow influence population genetic structure could be identified by jointly
using landscape and pruned genetic graphs for relating ARH metrics with genetic indices.

4.3 Does the resistance of the matrix affect genetic diversity and genetic differen-
tiation in the same way ?

The allelic richness and the relative genetic differentiation indices computed using the FST were
most strongly correlated and best explained by ARHmetrics computed with cost-distances. In contrast,
considering geodesic Euclidean distances was the best option for explaining the private allelic richness
and the relative genetic differentiation indices computed using the DPS. These differences might result
from i) the different time scales at which genetic diversity and differentiation respond to landscape
changes and ii) the ability of genetic differentiation indices to reflect landscape influence on either
historical or contemporary gene flow.
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First, as expected from theory (Varvio et al., 1986), genetic differentiation reaches its equilibrium
level faster than local genetic diversity does. For example, Keyghobadi et al. (2005) detected a po-
sitive influence of recent forests on genetic differentiation in a butterfly species dispersing through
open areas and avoiding forests, while local genetic diversity was best explained by patch isolation
metrics taking only geodesic Euclidean distances into account. Accordingly, the results we obtained
can be interpreted from the following hypotheses. The closer relationship between local genetic di-
versity and ARH metrics considering cost-distances instead of geodesic Euclidean distances reflects
the past influence of the matrix on dispersal. Second, the closer relationship between private allelic
richness and MIW indices computed from graphs pruned with the DPS and ARH metrics conside-
ring Euclidean distances instead of cost-distances points towards a lower influence of matrix resistance
on contemporary dispersal. These hypotheses are consistent with the current expansion of this species.

Second, previous landscape genetic studies have shown that the DPS reflects recent landscape
effects on genetic structure while the FST should be preferred for reflecting past landscape effects
(Holzhauer et al., 2006 ; Murphy et al., 2010b ; Storfer et al., 2010). This could explain why genetic
differentiation indices computed using the FST were most correlated with ARH metrics taking into
account the high resistance of some landscape features on dispersal. Although difficult to verify, this
explanation would also mean that the landscape matrix have become more permeable for this species
in recent years, thereby explaining its expansion.

Finally, Holzhauer et al. (2006) observed that roads and railways might be barriers for the large
marsh grasshopper while water areas are not. Accordingly, the scenario in which roads and railways
had a low resistance to movement and water areas a high resistance (W1000-R50) never provided
the best fits when studying local genetic diversity and historical gene flow (FST). In contrast, the
scenario in which transport infrastructures strongly limited dispersal and water areas were relatively
permeable (W50-R1000) performed well in explaining these variables. This result is inconsistent with
that of Keller et al. (2013) showing a positive effect of roads on dispersal in this species. However,
these authors only considered a measure of genetic differentiation related to contemporary landscape
influence on gene flow (mean assignment probabilities) as a response variable. Similarly, MIW indices
based on the DPS were best explained by ARH metrics without considering matrix resistance.

4.4 Limits and perspectives

The relationship between habitat structure and genetic structure is dynamic and takes time to
reach an equilibrium (Slatkin, 1993). Besides, the topology of the habitat network has a strong in-
fluence on genetic structure, which may be related to the species dispersal pattern (Van Strien, 2017).
Even under the hypothesis where only the amount of habitat at a given scale drives diversity patterns
(Fahrig, 2013), habitat configuration has been shown to affect them significantly (Saura, 2021). For
example, different traversability properties of the habitat network may influence long-distance gene
flow patterns over time, which would result in a different genetic structure. We also acknowledge that
the relative effects of the ARH on the two components of genetic structure here observed may be
specific to the habitat spatial pattern of our case study, but our results encourage using ARH metrics
in empirical landscape genetic studies. These aspects could be further investigated using ARH metrics
and performing gene flow simulations with varying population sizes, topologies, dispersal capacities,
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matrix resistances and habitat patterns.

Finally, our results are hardly comparable with previous ones distinguishing the effects of habi-
tat amount and configuration on genetic structure (Cushman et al., 2012 ; Jackson et Fahrig, 2015
; Millette et Keyghobadi, 2015). Most of these studies used link-level analyses (DiLeo et Wagner,
2016), whereas here we used a node- and neighbourhood-level approach. We may wonder whether it
influences the detection of landscape genetic relationships. Indeed, the MIW index is based on gene-
tic differentiation between one population and all links with neighbouring populations. It therefore
averages landscape effects over all these links, which may preclude the possibility of precisely esti-
mating the resistance of every type of landscape feature. Besides, in most previous studies, habitat
configuration measures such as inter-patch distances or patch isolation were strongly correlated with
habitat amount, which should have ruled out any conclusion that habitat configuration exerts a stron-
ger influence than habitat amount does on genetic structure (Jackson et Fahrig, 2015). Accordingly,
we focused here on complementary ARH metrics derived from spatial graphs because they account for
the compounded effects of both habitat amount and configuration, which are highly interdependent
(Didham et al., 2012). Their use has already been advocated (Saura, 2018) and we showed here that
it makes it possible to understand how spatial habitat patterns influence both drift and gene flow at
several spatial and temporal scales, while considering matrix resistance.
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A - Supplementary figures

A)

B)

Figure 27 – Comparisons of the topology of the genetic graphs pruned using the percolation threshold computed with
the DPS (A) or FST (B). Both graphs include 412 links and 34 nodes.
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Figure 28 – Variation of the Spearman correlation coefficients between total allelic richness (top) or private allelic
richness (bottom) and the F metric according to the cost scenarios and MDD used to compute these indices. x axis

indicates the dispersal kernels used to compute the metrics and corresponds to the MDD (maximum dispersal
distance). In this figure, the F metric was computed without weighting patch capacities (β = 0). Point colours refer to
the cost scenario used to compute cost-distances (see Table 6). Crosses indicate that the correlation is not significant

after p-value adjustment.
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Figure 29 – Variation of the Spearman correlation coefficients between total allelic richness (top) or private allelic
richness (bottom) and the BC metric according to the cost scenarios and MDD used to compute these indices. x axis

indicates the dispersal kernels used to compute the metrics and corresponds to the MDD (maximum dispersal
distance). In this figure, the BC metric was computed without weighting patch capacities (β = 0). Point colours refer to
the cost scenario used to compute cost-distances (see Table 6). Crosses indicate that the correlation is not significant

after p-value adjustment.
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Figure 30 – Variation of the Spearman correlation coefficients between the MIW index computed from the pruned
genetic graphs and the BC metric according to the genetic distance, cost scenarios and MDD used to compute these
indices. x axis indicates the dispersal kernels used to compute the metrics and corresponds to the MDD (maximum
dispersal distance). In this figure, the BC metric was computed without weighting patch capacities (β = 0). Point
colours refer to the cost scenario used to compute cost-distances (see Table 6). The left and right panels display the
variations observed when computing MIW from a genetic graph weighted with DPS and FST values respectively.

Crosses indicate that the correlation is not significant after p-value adjustment.
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Figure 31 – Projection of both the response variable (genetic indices) and the predictor variables (habitat metrics :
capacity, F, BC) of the best PLS-R1 regression for each genetic index (according to the Q2 value) on the obtained

factorial space. (A) Response variable : allelic richness. Predictor variables : Capacity computed under the cost scenario
w50-r1000, F computed under the cost scenario w50-r1000 with a MDD of 2000 m and β = 0 , BC computed under
the cost scenario w1000-r1000 with a MDD of 7500 m and β = 1 (B) Response variable : private allelic richness.
Predictor variables : Capacity computed under the cost scenario w50-r1000, F computed under the Euclidean cost

scenario with a MDD of 2500 m and β = 0 , BC computed under the cost scenario w1000-r1000 with a MDD of 6000
m and β = 1 (C) Response variable : MIWprun.g.dps. Predictor variables : Capacity computed under the cost scenario
w50-r1000, F computed under the Euclidean cost scenario with a MDD of 3000 m and β = 0 , BC computed under
the cost scenario w1000-r1000 with a MDD of 7500 m and β = 1 (D) Response variable : MIWprun.g.fst. Predictor
variables : Capacity computed under the cost scenario w1000-r50, F computed under the cost scenario w50-r1000

with a MDD of 2500 m and β = 0 , BC computed under the Euclidean cost scenario with a MDD of 3000 m and β = 1
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B - Supplementary tables

Table 9 – Pearson correlation coefficients between habitat metrics and genetic indices according to the cost scenario
used, the MDD considered and the weight given to patch capacities in the metric calculation (β value). The largest
correlation coefficient obtained for each genetic index, habitat metric and β value are displayed. The ’Signif.’ column

indicates whether the correlation is still significant after p-value adjustment (* : p < 0.05, ** : p < 0.01, *** : p < 0.001).
For the cost scenarios, refer to table ?? in the main document. ’DistNN’ means ’Distance to the Nearest Neighbour’.

Genetic in-
dex

Habitat metric Correlation

Metric Cost sc. MDD β rPearson Signif.
ar Capacity w50-r1000 1500 ∅ 0.426
ar Local.Buffer Euc. 200 ∅ 0.339
ar DistNN w1000-r1000 ∅ ∅ 0.125
ar F w50-r1000 2000 0 0.480
ar F w50-r1000 2000 1 0.400
ar Large.Buffer w50-r1000 1500 ∅ 0.440
ar BC w1000-r1000 7500 0 0.324
ar BC w1000-r1000 7500 1 0.325
Priv. ar Capacity w1000-r1000 1500 ∅ 0.263
Priv. ar Local.Buffer w1000-r50 500 ∅ 0.284
Priv. ar DistNN Euc. ∅ ∅ -0.223
Priv. ar F Euc. 1500 0 -0.507
Priv. ar F Euc. 1500 1 -0.484
Priv. ar Large.Buffer w50-r1000 2500 ∅ 0.448
Priv. ar BC Euc. 4500 0 -0.380
Priv. ar BC w1000-r50 1500 1 0.397
miwcomp.dps Capacity w50-r1000 1500 0.196
miwcomp.dps Local.Buffer Euc. 200 ∅ 0.211
miwcomp.dps DistNN w1000-r1000 ∅ 0.167
miwcomp.dps F Euc. 3500 0 0.466
miwcomp.dps F Euc. 3500 1 0.383
miwcomp.dps Large.Buffer w50-r1000 3500 ∅ -0.347
miwcomp.dps BC Euc. 3500 0 0.351
miwcomp.dps BC Euc. 1500 1 0.291
miwprun.dps Capacity w50-r1000 1500 ∅ 0.144
miwprun.dps Local.Buffer Euc. 300 ∅ 0.190
miwprun.dps DistNN w1000-r1000 ∅ ∅ 0.156
miwprun.dps F Euc. 3500 0 0.614 *
miwprun.dps F Euc. 3000 1 0.544
miwprun.dps Large.Buffer w50-r50 4500 ∅ -0.393
miwprun.dps BC Euc. 3500 0 0.467
miwprun.dps BC Euc. 1500 1 0.408
miwcomp.fst Capacity w50-r50 1500 ∅ 0.224
miwcomp.fst Local.Buffer w50-r1000 500 ∅ 0.189
miwcomp.fst DistNN Euc. ∅ ∅ -0.198
miwcomp.fst F w50-r50 2500 0 0.508
miwcomp.fst F w50-r50 2000 1 0.527
miwcomp.fst Large.Buffer w50-r50 1500 ∅ 0.264
miwcomp.fst BC w1000-r1000 1500 0 0.475
miwcomp.fst BC w1000-r1000 1500 1 0.622 *
miwprun.fst Capacity w50-r50 1500 ∅ 0.224
miwprun.fst Local.Buffer w50-r1000 500 ∅ 0.187
miwprun.fst DistNN Euc. ∅ ∅ -0.199
miwprun.fst F w50-r50 2500 0 0.509
miwprun.fst F w50-r50 2000 1 0.529
miwprun.fst Large.Buffer w50-r50 1500 ∅ 0.264
miwprun.fst BC w1000-r1000 1500 0 0.475
miwprun.fst BC w1000-r1000 1500 1 0.623 *
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C - Rationale behind the use of the Q2 to analyse PLS regression
results

When performing a PLS-R1 regression, we express the response variable y as a linear combination
of H components t1, t2, . . . , tH such that :

y = c1t1 + c2t2 + . . .+ cHtH

where c1, c2, . . . , cH are regression coefficients and t1, t2, . . . , tH are components obtained such that :

t1 = w11x1 + w12x2 + . . .+ w1pxp

and
w1j = cov(xj , y)√∑p

j=1 cov
2(xj , y)

Therefore, t1, t2, . . . , tH components are also linear combinations of the predictor variables x1, x2, . . . , xp.
From that, we can express y as a function of x1, x2, . . . , xp :

y = c1w11x1 + c1w12x2 + . . .+ c1w1pxp+

c2w21x1 + c2w22x2 + . . .+ c2w2pxp+

. . .

cHwH1x1 + cHwH2x2 + . . .+ cHwHpxp

(5.1)

The number H of components to compute is determined through a cross-validation. For each value
of h, a model with h components is computed, either from all the observations or leaving one (Leave
One Out cross Validation, LOOV) or a block of observations (k-fold cross validation) out. From these
models, predicted values of y are computed, either ŷhi, the prediction of yi from the model with h

components calibrated from all the observations, or ˆyh(−i), the prediction of yi from the model with h
components calibrated from a subset of the observations in which observation i is absent. Two criteria
are then computed to assess the goodness of fit of these models :

RSSh =
∑

(yi − ŷhi)2

and
PRESSh =

∑
(yi − ˆyh(−i))2

which are respectively referred to as the Residual Sum of Squares (RSS) and PRediction Error
Sum of Squares (PRESS). Adding a component is relevant if :

√
PRESSh ≤ 0.95

√
RSSh−1

which means that when adding another component the prediction error is lower than 90.25 % of
the residual sum of squares without adding this component :

PRESSh ≤ 0.9025RSSh−1
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Then,
PRESSh
RSSh−1

≤ 0.9025

and
1− PRESSh

RSSh−1
≥ 0.0975

Accordingly, the criterion Q2 is equal to :

Q2 = 1− PRESSh
RSSh−1

The value of Q2 is computed for every component h of the models. A component is considered as
having a significant effect in the model if it improves the prediction of y, and therefore if Q2 > 0.0975
(Tenenhaus, 1998).
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Annexe A6

Validating graph-based connectivity models for
a forest tropical bird species using independent
presence and genetic datasets

Abstract
Habitat functional connectivity is commonly modeled by landscape graphs, i.e. sets of habitat patches (nodes) connected

by potential dispersal paths (links), because graph-based distances and connectivity metrics are used for conservation or
knowledge-driven approaches. They are often built from expert opinion or species distribution models (SDM) and therefore
lack of validation from data more closely reflecting functional connectivity. Accordingly, we aimed to answer the following
question : are landscape graphs validated by independent genetic data ? To that purpose, we modeled the habitat network of
a forest bird species (Plumbeous warbler, Setophaga plumbea) in the Guadeloupe island with graphs built from either expert
opinion, specialization indices or a SDM. In parallel, we used genetic data (712 birds from 27 populations) for computing local
genetic indices and pairwise genetic distances. We finally studied the relationships between (i) genetic distances or indices and
(ii) cost-distances or connectivity metrics, using MLPE distance models and Spearman correlations between metrics. Overall,
the landscape graphs reliably reflected the influence of connectivity on population genetic structure, with validation R2 above
0.25 and correlation coefficients up to 0.72. Yet, the relationship between graph ecological relevance, data-requirements and
construction and analysis methods was not straightforward as the graph based upon the most complex construction method
(SDM) had sometimes a lower ecological relevance than the others. Cross-validation methods and sensitivity analyses allowed
us to make the advantage and limitation of every construction method spatially-explicit. In sum, we confirmed the relevance
of landscape graphs for conservation modeling but we call for a case-specific consideration of the cost effectiveness of their
construction methods.

Keywords : conservation modeling, habitat connectivity, landscape graphs, species distribution models, landscape ge-
netics

Cet article est en préparation pour une soumission dans la revue Conservation Biology en 2021 :

Savary, P.*, Daniel, A.*, Foltête, J. C., Khimoun, A., Faivre, B., Ollivier, A., Moal, H., Éraud, C., Vuidel, G. & Garnier,

S. Validating graph-based connectivity models for a forest tropical bird species using independent presence and genetic

datasets. In prep. for Conservation Biology. (* : contributions égales des auteurs)
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1 Introduction

The functional connectivity of species habitat patches depends on both the area and spatial confi-
guration of these patches and on the degree to which the landscape matrix resists movements between
them (Taylor et al., 1993, 2006). It determines dispersal events and resulting ecological processes such
as genetic and demographic rescue effects (Den Boer, 1968 ; Ingvarsson, 2001 ; Levins, 1969), which
ensure population fitness and persistence (Frankham, 2015 ; Nieminen et al., 2001 ; Saccheri et al.,
1998). Connectivity is therefore crucial for biodiversity conservation (Bennett, 1999 ; Correa Ayram
et al., 2016 ; Crooks et Sanjayan, 2006) and a key objective of current conservation policies (Hilty
et al., 2020). Consequently, several connectivity modeling approaches have been developed either for
supporting decision making (Carroll et al., 2012 ; Clevenger et al., 2002) or for investigating biological
responses to connectivity (Fletcher et al., 2016 ; Lindenmayer et al., 2020).

Connectivity modeling approaches have benefited from the increase of computational capacities
and spatial and biological data availability, which opened the way for complex models closely reflec-
ting the ecological reality (e.g. Pe’er et al. (2011)). Yet, the data and resources needed to implement
these approaches are not available on a regular basis, making more "pragmatic" modeling approaches
highly valuable (Fagan et Calabrese, 2006). Among them, landscape graphs have been argued to be
an optimal compromise for balancing data requirements, model complexity and ecological relevance
(Calabrese et Fagan, 2004). These tools make it possible to model an habitat network as a graph
whose nodes are habitat patches and links potential dispersal paths between these nodes (Bunn et al.,
2000 ; Urban et Keitt, 2001). Graph-theoretical metrics quantify the role of every node and link for
the connectivity of the whole network (Galpern et al., 2011 ; Rayfield et al., 2011) and can be pre-
dictor variables of biological responses in subsequent analyzes (Mony et al., 2018 ; Ribeiro et al., 2011).

Despite their strengths, landscape graphs suffer from several limitations (Moilanen, 2011). Indeed,
in order to estimate functional connectivity, most graph-based connectivity models imply the compu-
tation of dispersal paths from cost surfaces. This requires the formulation of assumptions regarding
the costs endured by the study species when moving across the landscape matrix (Beier et al., 2008
; Zeller et al., 2012). Most of these assumptions are based upon expert opinion and whether they
are close to the ecological reality is hardly ever tested for (Foltête et al., 2020 ; Sawyer et al., 2011).
Besides, graph nodes are defined from spatial data and supposed to reflect the spatial distribution of
the species habitat. Yet, it is undoubtedly a difficult task to locate such habitat areas reliably from
spatial data alone, which questions the validity of the habitat delineation (Moilanen, 2011). Finally, a
large range of connectivity metrics can be derived from landscape graphs (Baranyi et al., 2011 ; Laita
et al., 2011 ; Rayfield et al., 2011) but the relationship between the connectivity pattern they quantify
and the biological processes they are supposed to explain has rarely been tested (Moilanen, 2011).

To overcome these limitations, several types of biological data have been used in landscape graph
modeling (Foltête et al., 2020). Frequently, presence data were used in a first step for deriving a species
distribution model (SDM hereafter), which was then used as the basis for defining habitat patches
based upon suitability thresholds and/or for creating a cost surface by converting suitability scores
into cost values (Clauzel et Godet, 2020 ; Duflot et al., 2018 ; Tarabon et al., 2019). Modeling connec-
tivity using presence data is not without potential limits given that i) habitat suitability is often a
poor predictor of resistance to movement (Keeley et al., 2017) and ii) observing the presence of an
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individual is not an evidence for a successful dispersal event. Such an approach can therefore be ques-
tionable despite offering obvious advantages. Bourdouxhe et al. (2020) and Godet et Clauzel (2021)
created landscape graphs using expert opinion, SDM or a combination of both and then compared
the outputs. Although these authors precisely described the sensitivity of landscape graph modeling
to the input data and prior assumptions, they lacked an independent source of biological data closely
reflecting the response to connectivity for identifying which method provides the most realistic output.

Genetic data well reflect landscape connectivity (Zeller et al., 2018), as they provide direct insights
into dispersal-driven gene flow. According to Beier et al. (2008), using genetic data, animal-movement
data or interpatch movement measurements is the best option to estimate cost values. These same
authors consider that the second best option to that purpose is to use animal occurrence data whereas
relying upon expert opinion or literature review should be reserved to cases where empirical data are
not available. Yet, these assumptions have rarely been explicitly checked. To that purpose, provided
that genetic data are not used in the graph modeling step, they could be good candidate for assessing
the ecological validity of graphs constructed using either presence data or expert opinion (Foltête et al.,
2020). In studies using both genetic data and landscape graphs, these data were most often used for
calibrating cost values prior to graph construction, making it impossible to independently assess the
reliability of the graph a posteriori. Such an independent validation would be highly needed given the
frequency of use of landscape graphs constructed without biological data closely reflecting functional
connectivity. Besides, this would ensure that connectivity models reflect reliably landscape effects on
genetic diversity and gene flow, two target parameters of biodiversity conservation programs (Hoban
et al., 2020).

Accordingly, we used two independent presence/absence and genetic datasets in order to answer the
following question : are connectivity models based upon landscape graphs built from expert opinion or
presence/absence data validated by empirical genetic data ? To that purpose, we modeled the habitat
network of a forest bird species (Plumbeous warbler, Setophaga plumbea) in the Guadeloupe island
because connectivity has been shown to be important for bird species whose forest habitats have been
reduced (Callens et al., 2011 ; Nevil Amos et al., 2014) and particularly for this species (Khimoun
et al., 2016a, 2017). Besides, this species is endemic of a biodiversity hotspot (Myers et al., 2000)
facing habitat destruction and fragmentation, making the reliable modeling of its dispersal constraints
a conservation issue.

2 Material & Methods

The methodology we implemented is summarized on Figure 32. We built landscape graphs with
three construction methods using either expert-based information, Jacobs’ specialization indices or
a SDM and computed cost-distances along the links of these graphs and connectivity metrics at the
level of their nodes. In parallel, we acquired genetic data from birds of 27 populations and computed
population-level genetic indices and pairwise genetic distances. We then studied the statistical rela-
tionships between these genetic responses and the different cost-distance matrices and connectivity
metrics deriving from each graph in order to compare the ecological validity of their outputs. We
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hypothesized that distances and connectivity metrics computed from the SDM-derived graph would
provide the best predictions of the genetic responses.

2.1 Study area

The French Guadeloupe island (1,713 km2) is located in the Lesser Antilles (Figure 33). Forests
cover 44 % of the island but are mainly located on Basse-Terre (BT), its western part, because volcanic
soils, a more humid climate and a high relief make it less suitable for human settlement and agriculture.
It is connected by a narrow isthmus to Grande-Terre (GT), the eastern part of the island in which
forests have for long undergone more substantial destruction and fragmentation (Éraud et al., 2009).
The Plumbeous warbler (Setophaga plumbea) is an endemic bird species of the Caribbean known to
be a forest specialist in which gene flow is dependent upon forest cover and influenced by landscape
resistance (Curson, 2014 ; Khimoun et al., 2016b, 2017 ; Leblond, 2008 ; Lovette et al., 1998). The
corollary is that studying the genetic structure of this species could give hints about the influence of
connectivity on genetic processes, thereby making it useful for validating connectivity models. Besides,
although this species is endemic and threatened by forest degradation, its abundance levels still make it
possible to sample and contact sufficient individuals for describing its genetic structure and modelling
its distribution (Éraud et al., 2012).

2.2 Connectivity modeling

2.2.1 Spatial and climatic data

We used land cover and climatic spatial data for creating the SDM and the landscape graphs.
CORINE Land Cover data of 2012 were complemented by the IGN BD TOPO database for locating
roads and built-up elements. Besides, we used the 2010 map of 17 woody vegetation formations created
by the Conseil Départemental of Guadeloupe, the IGN and the ONF using manually interpreted aerial
photographs (Supporting information 14). Mean precipitation and temperature raster layers with a
resolution of 20 m were obtained by interpolation of punctual data of 61 Meteo-France stations for
the period 2012-2014, following Joly et al. (2012) and Castel et al. (2017).

Initial land cover types were classified into nine types (Supporting information 13 and 37). A
categorical raster cost surface (resolution : 20 m) was created from these data. Besides, continuous
raster layers indicating the distance from each pixel to the closest road, forest, agricultural or built-up
elements and the proportion of these landscape features in circular landscapes of 500 m radius around
each pixel were created for species distribution modeling.

2.2.2 Expert based information

We obtained expert-based information by asking a local ornithologist expert to :

1. Identify the vegetation formations that constitute the Plumbeous warbler habitat areas. We
used them for creating the habitat patches (graph nodes) of the expert-based landscape graph
(Table 10). These areas then represented a tenth class of the cost surface.

2. Assign each of the ten land cover types a cost value for computing the least-cost paths between
the habitat patches (graph links) of the expert-based landscape graph. Cost values could be
chosen in a free range of values starting from 1.
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Figure 32 – Schematic illustration of the overall methodology
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27 sampled populations Forest 

Figure 33 – The Guadeloupe island within the Caribbean region.

2.2.3 Specialization indices

We used 991 bird count point data acquired by the ONCFS, the Guadeloupe National Park and
several NGOs between 2009 and 2011. They used a stratified sampling protocol covering the different
vegetation units, modified in areas of most difficult access. Each point was surveyed twice a year from
mid-april to mid-july. The observers stayed at each point for five minutes and recorded the number
and species name of seen or heard individuals (Éraud et al., 2012).

From the presence/absence data relative to the study species, we computed a specialization index
for each of the ten land cover types following the formula of Jacobs (1974)(Supporting information
B). This index varies from −1 (the species avoids the land cover type) to 1 (the species is a specialist
of the land cover type). If the index is equal to 0, then the species is rather neutral relative to the
land cover type. The land cover type with the maximum Jacobs’ index was considered as the species
habitat and used for delineating the habitat patches (graph nodes) of the specialization index-derived
landscape graph (Table 10). Land cover types were assigned a cost value using a formula adapted from
Bourdouxhe et al. (2020) :

Costi = e
− ln(Costmax)×(Jacobsi+1)

Jacobshabitat+1 × Costmax

where Costi and Jacobsi are respectively the cost-value and Jacobs’ index associated with land
cover type i and Costmax is the maximum cost value. Jacobshabitat is the maximum index value,
associated with the species habitat. This formula ensured that the cost value of this preferred land
cover type was equal to 1. The negative exponential distribution of the cost values reflects the fact that
habitat choices are poor predictors of species dispersal capacities in a given area (Keeley et al., 2016,
2017). The maximum cost value was set to 1000, reflecting previous empirical results (Gurrutxaga
et al., 2010).
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2.2.4 Species distribution model

We created a distribution model of the Plumbeous warbler for delineating its habitat patches and
deriving cost values from empirical data (Table 10). We preferred to use logistic regressions rather than
using the Maxent algorithm because presence-absence methods should be used when both presence
and absence data are available (Guillera-Arroita et al., 2014). Besides, sampling biases are known
to be better accounted for when using both presence and absence data (Fletcher et Fortin, 2018).
We considered predictor variables describing the climatic and land cover contexts (see above). We
controlled for the collinearity of predictor variables and conserved a set of variables that were not
overly correlated (r < 0.7) and were potential factors explaining the distribution of the species. After
preliminary analyses, we retained the following variables in the model : percentage of agricultural and
artificial areas at a radius of 500 m around the data point, distance from the point to the closest road
and forest and mean annual precipitation. The forest areas considered for computing the distance to
the forests were those identified as being potential habitats by the experts. It reflects the fact that in
practice, such information is available for the modeling.

To correct for the fact that bird count points in BT mostly followed linear and accessible tracks
and were somehow aggregated, we iteratively subsampled these points to conserve only two points
per track. Using this approach, we obtained consistent results and therefore randomly selected one
of these samplings for computing the final model. From the confusion matrix obtained, we computed
the Matthews correlation coefficient (Matthews, 1975) to assess the prediction quality of the model
at different suitability thresholds. The relevance of this index comes from its consideration of every
value of the confusion matrix (Baldi et al., 2000).

The threshold suitability value maximizing the MCC was selected as the probability threshold
above which we considered a pixel to be a habitat pixel. We converted suitability scores into cost
values using the same formula as for converting specialization indices and the same maximum cost
value Costmax, such that the cost value Costi associated with every pixel was :

Costi = e
− ln(Costmax)×Si

Sthr. × Costmax

where Sthr. is the threshold probability used for delineating habitat patches and Si is the suitability
score of pixel i.

2.2.5 Landscape graphs

Graph construction
We created four landscape graphs whose nodes and links were defined in three different ways

according to the information source (Table 10), using Graphab software (Foltête et al., 2012a). The
minimum patch size was set to 1 ha because this is the minimum area needed by a breeding pair (Éraud
et al., 2012). The capacity of the nodes was equal to their area. The size of some habitat patches in
BT exceeded the scale at which habitat amount is supposed to influence population dynamics, which
has been shown to decrease the explanation power of graph-based connectivity metrics (Laroche et al.,
2020). We thus controlled for the maximum size of habitat patches by fixing their maximum extent
to 2,500 m side length.
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Landscape graph Node delineation Cost-values for link weights
Expert-based (1 and 2) Preferred vegetation formation

according to expert opinion
Cost values following expert opi-
nion

Specialization index-derived Land cover type with the highest
specialization index value

Cost values converted from spe-
cialization index values following
Bourdouxhe et al. (2020) and as-
suming a cost of 1 in the prefer-
red habitat

SDM-derived Areas with suitability scores
above the suitability threshold
maximizing the prediction per-
formance of the SDM

Cost values converted from sui-
tability scores following Bour-
douxhe et al. (2020) and assu-
ming a cost of 1 in the habitat

Table 10 – Landscape graph elements according to the different graph construction methods. Two cost scenarios were
derived from the expert responses (cf. section 3.1.1).

The topology of the landscape graphs was planar as it is a good approximation of the complete
graph (Fall et al., 2007) and reduces computation times. The links were weighted with the cost-
distances associated with the least-cost paths between habitat patches.

Connectivity metrics

From these graphs, we computed three complementary metrics reflecting the ways each patch
contributes to the connectivity of the whole habitat network (Baranyi et al., 2011 ; Rayfield et al.,
2011). The capacity of every patch was one of these metrics as it reflects intra-patch connectivity
(Pascual-Hortal et Saura, 2006) and is a proxy for the carrying capacity of the patches, an important
parameter for the demographic component of the connectivity (Drake et al., 2021). We then computed
the Flux index (F) in order to measure the contribution of each habitat patch to immigration and
emigration flows. We used the following formula :

Fi =
n∑

j=1j 6=i
Capaj × e−α×dij

with i the index of the focal patch, j the index of all the other n patches and dij the cost-distance
between patches i and j. Capaj is the capacity of patch j. α was computed according to different
dispersal kernels in order to test for the influence of the scale at which between-patch connections are
assigned significant weights for computing the metrics. Exponential functions assuming that landscape
effects on biological responses progressively decay with distance have already been shown to outper-
form weighting functions based on fixed distance thresholds (Miguet et al., 2017). To that purpose,
we set α values such that p = e−αdij = 0.05 for distances dij ranging from 500 to 15,000 m (with steps
of 500 m), thereby considering the amount of reachable habitat (sensu Saura et de la Fuente (2017))
beyond the immediate neighbourhood of a population. The Euclidean dispersal distances considered
for computing α were converted into cost distances using a log-log linear regression (Tournant et al.,
2013).

We finally computed the Betweenness Centrality (BC) index in order to quantify the role of each
patch for the traversability (sensu Urban et Keitt (2001)) of the whole habitat network (Baranyi et al.,
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2011 ; Bodin et Norberg, 2007) :

BCi =
∑
j

∑
k

Capaj × Capake−α×djk

j, k ∈ {1, . . . , n} , k < j, i ∈ Pjk

Pjk represents the set of crossed habitat patches along the least-cost path between patches j and k. α
took the same range of values as for the F calculation. This index makes it possible to identify patches
that play the role of stepping stones in the habitat network. It has therefore been hypothesized that
the BC index would identify habitat patches maintaining high genetic diversity levels (Zetterberg
et al., 2010). We computed these three metrics for every landscape graph.

2.3 Genetic data analysis

2.3.1 Field sampling and genotyping

712 birds were mist-netted in 27 forest patches (9 and 18 from GT and BT, respectively, Figure 33).
20 sites were sampled in 2015 and the other seven in 2020, all following the protocol outlined by Khi-
moun et al. (2017). To determine whether these two data sets could be pooled, four sites were sampled
twice and genetic differentiation from 2015 to 2020 was tested using genepop (Raymond et Rousset,
1995). This temporal genetic differentiation was not significant for three of the four populations. The
relative level of genetic differentiation between the only differentiated population and the other ones
remained stable from 2015 to 2020. We thus pooled the data.

The total DNA extraction was performed following either a standard phenol-chloroform protocol
(Khimoun et al., 2017) or from blood samples stored in Queen’s lysis buffer using Blood Genomic DNA
Mini-Preps Kits (BIO BASIC INC., Markham, Canada), for the 2015 and 2020 datasets respectively.
12 microsatellite loci were genotyped following PCR conditions reported in Khimoun et al. (2016a).
Loci were amplified in simplex in a Dyad thermal cycler (Bio-Rad, Hercules, CA, USA), PCR products
were multi-loaded for analyses in an automated sequencer (ABI3730), and allele scoring was performed
using GENEIOUS R.8 (Kearse et al., 2012).

2.3.2 Genetic structure indices

We checked for Hardy-Weinberg Equilibrium in each population and for the absence of linkage di-
sequilibrium between pairs of loci using genepop (Raymond et Rousset, 1995). The genetic diversity
of each population was assessed by its allelic richness (noted Ar hereafter), computed using a rare-
faction method implemented in ADZE 1.0 (Szpiech et al., 2008) to account for differing numbers of
individuals in the populations. The relative genetic differentiation level of each population was assessed
by the Mean of Inverse Weight metric (noted MIW hereafter), using the graph4lg R package (Savary
et al., 2021b). The MIW is the mean of the inverse pairwise genetic differentiation values between each
population and the 26 others. Highest values indicate populations that are the least different from the
others from a genetic point of view. Koen et al. (2016) have shown that this index correlates well with
the number of dispersing individuals in a population. Pairwise genetic differentiation values (referred
to as genetic distances hereafter) were estimated by the FST (Weir et Cockerham, 1984).
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2.4 Validation of landscape graph modeling

2.4.1 Cost scenario and link validation

We wanted to identify the cost scenario reflecting best how land cover types influence the dispersal
movements of the study species. Genetic data were assumed to reflect such movements, if followed by
gene flow. Therefore, the cost-distance values explaining best pairwise genetic distances were supposed
to be the most reliable estimates of landscape connectivity among pairs of populations. For each graph,
we thus computed the matrices of cost-distances between populations along the links of the landscape
graphs.

We then modeled the relationship between cost-distances and pairwise genetic distances using
MLPE models (Clarke et al., 2002). These models explain genetic distance as a function of cost-
distance and include a population random effect to control for the non-independence of the obser-
vations inherent to models based upon distance matrices. They have been shown to perform well in
landscape genetic studies (Shirk et al., 2017b).

The spatial scale at which genetic distances have reached an equilibrium reflecting the influence
of both migration and drift has been shown to influence the assessment of the relationship between
landscape distance and genetic distance (Savary et al., 2021a ; Van Strien et al., 2015). Accordingly,
we assessed the relationship between landscape distances and genetic distances by considering the
links between all population pairs or alternatively only the links between population pairs located
on the same part of the island (intra-island pruning conserving only BT-BT or GT-GT links) or all
population pairs separated by a cost-distance lower than several iterative threshold values (threshold
pruning). The first approach reflects what is commonly done in landscape genetics, while the other
two reflect the fact that a study area is sometimes divided in several parts for carrying out the analysis
(Angelone et Holderegger, 2009 ; Reed et al., 2017 ; Wang et al., 2008), or that iterative thresholding
can help understanding the scale of landscape effects on genetic structure (Angelone et al., 2011 ;
Emaresi et al., 2011). Adopting these different approaches was also a way to assess the interpretation
errors potentially resulting from the wrong choice of the spatial scale of the analysis.

We controlled for potential model overfitting by adapting the Leave One Out Cross Validation
(LOOCV) method to our specific objectives and genetic distance data. When creating the MLPE
models, we removed iteratively one population and all the links including it from the training data,
created the model and then predicted the genetic distance values involving this population using the
calibrated model. We therefore predicted 26 genetic distances at each iteration ; the genetic distance
associated with a given population pair being predicted twice overall. The mean predicted genetic
distances (from the two predicted values) were compared with observed genetic distances to assess the
performance of each cost scenario and link set in reliably modeling the relationship between landscape
distance and genetic distance. We computed a validation R-squared to quantify the prediction error
(Supporting information C). We also computed the root mean square of the errors (RMSE) associated
with each population pair from the two corresponding predicted values. We finally computed the mean
of these RMSE at the population level by averaging the values corresponding to the 26 population
pairs involving a given population and we mapped the results for locating the areas where the model
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performed worst.

2.4.2 Metric validation

We aimed to identify the connectivity metrics reflecting best the genetic diversity and relative
genetic differentiation indices computed at the population level. To that purpose, we extracted the va-
lues of each habitat connectivity metric corresponding to the habitat patches occupied by the sampled
populations. We then computed Spearman correlations between the two genetic indices (Ar, MIW)
and the three connectivity metrics (Capacity, F, BC), for all the parameters used for computing the
connectivity metrics. Finally, in order to illustrate the potential interpretation errors resulting from
inadequate calculation parameters, we compared the rank of the occupied habitat patches in terms
of connectivity according to (i) the F metric most strongly correlated to the genetic indices or al-
ternatively, (ii) according to this same metric computed using different computation parameters, and
mapped the rank differences.

3 Results

3.1 Landscape graphs

3.1.1 Graph construction parameters

Expert opinion
According to the expert, the Plumbeous warbler occupies all the woody vegetation formations but

two : coastal thickets and fallow lands with low-growth woody vegetation (Supporting information 14).
The assigned cost values ranged from 1 to 10, the smallest values being assigned to forests, followed by
agricultural areas, semi-open areas and wetlands. On the opposite, the ocean and artificialized areas
were the most resistant land cover types. For allowing comparisons with the other cost scenarios, we
rescaled these cost values to set the maximum at 1000 by either (i) multiplying the values by 100,
thereby conserving the relative contrasts (expert-based 1 scenario), or by (ii) rescaling them between 1
and 1000 to conserve the same range as in the other cost scenarios (expert-based 2 scenario)(Table 11,
Supporting information 39).

Specialization indices
The maximum Jacobs’ specialization index was obtained for the habitat areas delineated by the

expert (0.73) whereas the minimum were obtained for open areas (−0.83), agricultural areas (−0.68)
and artificial areas (−0.26)(Table 11). Given the absence of bird count points in water, wet areas or in
the ocean, we set the corresponding indices at −1. Although there was not any point in semi-natural
areas, these areas were mostly urban green spaces and we assigned them the same index as for artificial
areas. The cost values converted from these indices ranged from 1 to 1000, with sharp contrasts as
illustrated by the costs of 52 and 241 respectively assigned to artificial and agricultural areas (Sup-
porting information 39).

Species Distribution Model
The bird count point dataset included 206 presence points and 785 absence points of the study

species. The SDM we used for constructing the graph had a good prediction accuracy, with an AUC
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Land cover type Initial values Cost values
Exp. Spec.index Exp.1 Exp.2 Spec.index-derived SDM-derived

Habitat 1 0.73 100 1 1 9 ± 84
Forest 2 0.46 200 112 3 127 ± 308
Semi-natural 4 -0.26 400 334 52 314 ± 367
Semi-open 3 0.29 300 223 6 577 ± 450
Open areas 4 -0.83 400 334 509 544 ± 428
Agricultural 3 -0.68 300 223 241 598 ± 420
Wet areas 3 -1 300 223 1000 109 ± 264
Water 4 -1 400 334 1000 459 ± 441
Ocean 10 -1 1000 1000 1000 993 ± 76
Artificial 10 -0.26 1000 1000 52 510 ± 405

Table 11 – Specialization indices and raw expert-based cost values associated with every land cover type and
corresponding cost values according to each cost scenario. Exp.1 and Exp.2 are the two cost scenarios deriving from
expert opinion. Spec.index refers to the cost values obtained from the Jacobs’ specialization indices and SDM-derived
refers to the cost values obtained from the Species Distribution Model. In this latter case, the range of cost values is
continuous rather than discrete and mean (± SD) cost values have been computed within each land cover type for

comparison purposes.

equal to 0.918 (Supporting information 38). The suitability threshold maximizing the Matthews’ Cor-
relation Coefficient and above which we considered a pixel to be a habitat pixel was equal to 0.328
(MCC : 0.547). The distance to the closest forest had the strongest effect. It negatively influenced
the suitability scores, as did the proportion of agricultural and artificial pixels in the surrounding of a
pixel. In contrast, an increase of the distance to the closest road and of the mean precipitation tended
to increase the suitability.

In the SDM-derived cost scenario, the values were very contrasted, the expert-based habitat areas
being the only land cover type with a mean cost value lower than 100 (Table 11, Supporting informa-
tion 37 and 39). Agricultural areas (25.4 % of the terrestrial area) took a substantially larger mean
cost value as compared with their value in the expert-based (1 and 2) or specialization index-derived
cost scenarios (598 vs 300, 223 and 241, respectively). Artificial areas (20.8 %) took in average a lower
cost value (510) than in the expert-based scenarios (1000) but a larger value than in the specialization
index-derived scenario (52, Table 11).

3.1.2 Graph element properties

The landscape graphs built using the different patch delineations and cost scenarios differed by
both their node and link properties. The expert-based and specialization index-derived graphs shared
the same nodes. They had more nodes with a smaller average area (1653, mean area : 39 ha) than
the SDM-derived graph (621, mean area : 102 ha). Indeed, the inclusion of the distance to the closest
forest in the SDM tended to incorporate non-forest pixels located on the margin of forest pixels in the
habitat patches delineated from this model, sometimes enlarging them. Besides, the effect of the other
predictor variables tended to decrease suitability scores in less forested areas, thereby decreasing the
number of patches (Supporting information 40 and 41).

Because of the lower number of patches and of the high cost values assigned to both agricultural and
artificial areas when building the graph from the SDM, the distribution of the cost-distances between
populations along the links of this graph had a different shape than those obtained from the other
graphs (Supporting information 40 and 41). In particular, the cost-distances between populations
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Figure 34 – R2 of the MLPE models explaining pairwise genetic distances (FST) as a function of the cost-distances
between populations along the links of the landscape graphs. Vertically separated boxes distinguish the different cost

scenarios used for computing cost-distances when creating landscape graphs. ’Expert-based 1 and 2’ : expert-based cost
scenarios, ’Spec.index-derived’ : cost values converted from Jacobs’ specialization indices, ’SDM-derived’ : cost values
converted from suitability scores of the Species Distribution Model. Bar colors indicate the set of links (population
pairs) considered in the models. ’Complete’ : all population pairs, ’Thr. pruning’ : population pairs separated by a

cost-distance lower than a given cost-distance threshold (only the results of the best models obtained using a distance
threshold are reported for each cost scenario), ’Intra-island’ : only pairs of populations located on the same part of the

island are considered (BT-BT or GT-GT). Plain and striped bars respectively indicate the R2 obtained with the
training data or with the validation data (Leave-One-Population-Out Cross Validation).

separated by the isthmus (BT-GT) were much larger when using the SDM-derived scenario rather
than the other scenarios. Overall, the latter cost-distances were larger than the cost-distances between
populations pairs from BT or GT (BT-BT or GT-GT).

3.2 Genetic structure

Populations from BT and GT had similar levels of genetic diversity in average although the allelic
richness was more variable in BT (BT : 4.63± 0.34, GT : 4.82± 0.13, Supporting information 15). In
BT, the main differences were observed between populations located inside the largest forest patches
and those located on their margins. Similarly, the indices of relative genetic differentiation (MIW) took
values larger than 50 in seven populations of the largest forest patches in BT, intermediate values (26-
50) in all GT populations and values lower than 26 in nine BT populations, mostly located on the
margins of the main forest patches (Supporting information 15).

3.3 Cost scenario and graph link validation

The MLPE models explaining genetic distances (FST) in function of the cost-distances between
populations along the graph links provided contrasted results according to the cost scenario and the
set of links considered (Figure 34). Whatever the cost scenario, the models considering all population
pairs had low calibration R2 and validation R2. The highest calibration R2 were obtained with the
cost scenarios deriving either from the SDM (0.36) or the specialization indices (0.35), followed by the
expert-based 2 scenario (0.28)(Figure 34).
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Figure 35 – Genetic distance prediction errors of the MLPE models. The mean of the prediction errors of the genetic
distances involving every population and all the 26 others has been computed for each population. The prediction error

considered is the square root of the mean of the squared differences between the observed genetic distance and the
genetic distance predicted by the MLPE models in which one of the two populations of a pair has been excluded from
the training dataset (two values for each pair). The corresponding validation R2 of the MLPE model is reported on the
figure. Results are displayed for models including cost-distances computed from cost scenarios deriving either from the
Jacobs’ specialization indices (A, B) or from the Species Distribution Model (SDM)(C, D), and considering populations
pairs either selected based on a threshold pruning (A, C) or corresponding to populations located on the same subpart

of the island (BT-BT or GT-GT).

The set of links to consider for maximizing the model goodness-of-fit was not the same according to
the cost-distances used (Figure 35). When using the SDM-derived scenario, genetic distances were best
explained by a subset of cost-distances lower than a given threshold. Using this threshold separated
the populations in two subsets : (i) the populations from GT and one BT population located close to
the isthmus and to GT forest patches (FX13) and (ii) all the other BT populations (Figure 35C). This
means that large cost-distance values computed from suitability scores across the large area without
forest patches at the west of the isthmus did not allow for modeling genetic distances correctly. In
contrast, when using the specialization index-derived scenario, the best model explained the genetic
distances between pairs of populations located on the same side of the Guadeloupe island (BT-BT or
GT-GT pairs, Figure 35B). This included population pairs separated by large unfavorable areas (e.g.
between FX13 and the other BT populations).

The validation R2 confirmed that cost-distances computed from landscape graphs were often re-
liable predictors of genetic distances (Figure 34). The different performances depending on the link
set considered partly stemmed from the fact that the genetic distances between FX13 and the other
BT populations were not predicted correctly by the SDM-derived cost-distances, leading to a negative
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validation R2. In contrast, the genetic distances between this population and the GT populations were
well predicted using these same cost-distances. Besides, the prediction errors of the best models mainly
concerned population pairs involving BT populations, and especially those located on the margin of
the largest forest patches. When using a cost-distance pruning threshold, the expert-based 2 scena-
rio led to the third highest validation R2 (0.18) across all cost scenario and link set combinations.
This means that, comparatively, an expert-based scenario could still provide reliable genetic distance
predictions.

3.4 Metric validation

The two genetic indices (Ar, MIW) were each significantly correlated to all the three habitat connec-
tivity metrics (Capacity, F, BC). For each cost scenario, we only report (i) the highest correlation
coefficients obtained when using the different distances d at which we considered that p(d) = 0.05 for
fixing α and (ii) the corresponding correlation obtained when considering that d = 5000 m (Table 12).
These coefficients took large values (up to 0.72) and tended to be slightly higher between the connec-
tivity metrics and the MIW rather than the allelic richness. Besides, the optimal distance d used for
computing the metric was always equal or lower than 3500 m.

The correlations obtained with metrics computed using the SDM-derived landscape graph were
overall different and lower than those obtained with the three other graphs (Table 12). Indeed, in all
but one case (MIW ∝ Capacity), the metrics computed from the expert-based 1 landscape graph led
to stronger correlations than metrics computed using the other graphs.

When considering that d = 5000 m, the correlations were still significant in most cases, but much
lower than when using optimal d values. This was due to differences in the ranking of the habitat
patches in terms of connectivity, which less closely reflected in this case the genetic responses observed
in the populations occupying the patches. Interestingly, the largest rank differences were observed for
populations located either in the most forested area of GT or in forest patches disconnected from
the largest forest patches of BT. In the former case, using a high d value under-estimated the actual
connectivity level of GT patches surrounded by forested areas at a small spatial scale. In contrast, this
over-estimated the connectivity of the BT patches which are disconnected from large forest patches
when considering connections at a restricted scale (Figure 36).
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Genetic index Connect. metric Habitat delineation/cost scenario rSp. - Optim. dOptim. rSp. - 5000 m
MIW Capacity Exp. 1/ Exp.2 / Spec.ind. 0.50 *
MIW Capacity SDM-derived 0.57 **
All.rich. Capacity Exp. 1/ Exp.2 / Spec.ind. 0.55 *
All.rich. Capacity SDM-derived 0.45
MIW F Expert-based 1 0.72 *** 1000 0.55 **
MIW F Expert-based 2 0.68 *** 1000 0.55 **
MIW F Spec.ind.-derived 0.71 *** 500 0.53 **
MIW F SDM-derived 0.58 ** 3500 0.54 **
All.rich. F Expert-based 1 0.53 ** 500 0.22
All.rich. F Expert-based 2 0.42 * 1000 0.20
All.rich. F Spec.ind.-derived 0.48 * 500 0.26
All.rich. F SDM-derived 0.37 3500 0.31
MIW BC Expert-based 1 0.68 *** 2500 0.58 **
MIW BC Expert-based 2 0.63 *** 1000 0.55 **
MIW BC Spec.ind.-derived 0.68 *** 500 0.49 *
MIW BC SDM-derived 0.63 *** 3500 0.62 ***
All.rich. BC Expert-based 1 0.50 ** 2500 0.44 *
All.rich. BC Expert-based 2 0.51 ** 500 0.39 *
All.rich. BC Spec.ind.-derived 0.50 ** 500 0.41 *
All.rich. BC SDM-derived 0.42 * 1500 0.35

Table 12 – Spearman correlation coefficients between genetic indices and connectivity metrics. Values are reported
according to the genetic index (MIW : Mean Inverse Weight, All.rich. : allelic richness), the connectivity metric

(Capacity, F, BC), the scenario considered for delineating habitat patches and fixing cost values (’Expert-based 1 and
2’ : expert-based scenarios, ’Spec.index-derived’ : habitat delineation and cost values deriving from Jacobs’

specialization indices, ’SDM-derived’ : habitat delineation and cost values deriving from suitability scores of the Species
Distribution Model) and the distance at which dispersal probability is set to 0.05 for computing α values. For

comparison purposes, for each combination of a genetic index, a connectivity metric and a construction scenario, we
report the correlation coefficients obtained when using the optimal distance and corresponding α value for computing
the connectivity metric, and also the value obtained when considering that p(d = 5000m) = 0.05 for fixing α. The

highest correlation coefficient for each combination of a genetic index and a connectivity metric is displayed in bold.
Stars refer to correlation significance : * : p < 0.05, ** : p < 0.01, *** : p < 0.001.

Rank differences: FExp.1/1000m - FExp.1/5000m
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Figure 36 – Differences between the ranks of the habitat patches occupied by the sampled populations in terms of
connectivity. For each occupied patch, we computed the difference between the rank of the F values computed using
the expert-based cost scenario 1 and considering that dispersal probability is equal to 0.05 at a distance d equal to

either 1000 m or 5000 m. The former d value is optimal according to Table 12. Negative rank differences indicate that
the connectivity of the patch is overestimated when using d = 5000 m as compared with d = 1000 m.
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4 Discussion

Most connectivity models based on landscape graphs are lacking of a posteriori empirical validation
(Foltête et al., 2020 ; Godet et Clauzel, 2021 ; Kadoya, 2009). Using genetic data, we here demons-
trated that landscape graphs constructed using either expert-opinion or presence/absence data were
reliable models of the influence of habitat patch connectivity on population genetic structure. We
thus confirmed their interest for conservation modeling. Yet, the relationship between graph ecological
relevance, data-requirements and construction and analysis methods was not straightforward. Indeed,
the graph based upon the most complex construction method (SDM) had a similar or even lower eco-
logical relevance than the others. In the following sections, we discuss these points while mentioning
their implications for biodiversity conservation.

4.1 Landscape graphs are empirically validated by genetic data

Genetic distances are well explained and predicted by the cost-distances associated with graph links
We first evidenced that whatever the landscape graph construction method, the cost-distances as-

sociated with graph links explained a substantial share of the variance of the genetic distances between
populations sampled in graph nodes (> 25 %). Using linear mixed models (MLPE) and an ad hoc
cross-validation approach, we additionally showed that these cost-distances had a predictive accuracy.
We thus validated in a proper way the relationship between genetic distances and cost-distances com-
puted under different cost scenarios. Indeed, this relationship had most often been evidenced using
correlative approaches (Balbi et al., 2018 ; Creech et al., 2014 ; Wang et al., 2008). Our method also
illustrates that landscape graphs could be useful for implementing predictive approaches in landscape
genetics. Such approaches would strengthen the interest of this field for conservation modeling (Keller
et al., 2015 ; Richardson et al., 2016) but have rarely been implemented so far (but see Van Strien
et al. (2014)).

Graph-based connectivity metrics were significantly correlated with genetic indices
Moilanen (2011) raised concern about the uncertain ecological relevance of the multitude of me-

trics deriving from landscape graphs. Yet, it has been shown that a restricted set of these metrics
would be sufficient to reflect how habitat connectivity influences ecological processes such as recruit-
ment, migration flows and long-distance rescue (Baranyi et al., 2011 ; Rayfield et al., 2011 ; Urban
et Keitt, 2001). Accordingly, we computed three complementary connectivity metrics (Capacity, F,
BC) and showed that they were each significantly correlated with the local genetic diversity of each
population and with their level of genetic differentiation with other populations. In contrast with pre-
vious studies evidencing similar landscape genetic relationships (Castillo et al., 2016 ; Creech et al.,
2014), our landscape graphs were independent from any information deriving from genetic data, the-
reby strengthening the significance of the relationship between genetic responses and connectivity
metrics. Besides, the relationships between our connectivity metrics and both genetic diversity and
differentiation confirms previous results obtained in separate studies of the relationships between si-
milar graph-based connectivity metrics and either genetic diversity (Bertin et al., 2017 ; Capurucho
et al., 2013) or population-specific genetic differentiation indices (Peterman et al., 2015). Therefore,
the metrics associated with the nodes and links of landscape graphs are reliably reflecting the drivers
of both genetic drift and gene flow, as expected from theory (DiLeo et Wagner, 2016). This means that
ranking habitat patches (nodes) according to different connectivity metrics provides insight into the
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respective genetic responses of the populations occupying them and would result helpful for designing
conservation measures.

4.2 Relationship between graph ecological relevance, data requirements and construc-
tion and analysis methods

Apart from validating the landscape graph approach, we aimed at comparing the ecological rele-
vance of graphs built using either expert-based information or empirical data. We hypothesized that
the graph deriving from a SDM would provide the most realistic outputs because this approach is
supposed to prevent from relying upon subjective expert opinion (Duflot et al., 2018). However, this
hypothesis was only partly supported.

Using empirical data and complex construction methods does not guarantee graph ecological rele-
vance

We used 991 presence/absence observations and both climatic and landscape context variables for
fitting the SDM while the same presence/absence data and only land cover data were needed for com-
puting specialization indices. Only land cover data and expert opinion were needed for the simplest
expert-based approach. The methods on which the construction of the graphs depended thus differed
in terms of both data requirement and complexity. Despite these differences, the connectivity metrics
deriving from expert-based graphs were often the most correlated to the genetic indices, although
those deriving from the other graphs also exhibited significant correlations. Besides, even if the best
model explaining genetic distances included cost-distances computed using the SDM-derived cost sce-
nario, the cost-distances computed from cost values deriving from specialization indices provided very
similar goodness-of-fit. One of the expert-based scenario also provided relatively accurate predictions.
This indicates that, compared with the SDM approach, simpler empirical approaches or expert-based
approaches could be reliable and more cost-effective in many instances. Similarly, Poor et al. (2012)
showed that expert-based models of migration corridors were the most cost-effective given the slight
improvement provided by models based on SDM. Therefore, although we confirm that integrating
empirical data in landscape graph modeling leads to reliable models (Kadoya, 2009), we question the
cost-effectiveness of such an approach when it is based on a SDM.

Construction methods appear to be equally important as data and information source
The quality of the SDM cannot explain why the SDM-derived graph did not always appear as the

most realistic. Indeed, the SDM had a good accuracy (AUC > 0.9), reflecting the quality of these
models for specialist species such as the Plumbeous warbler (Hernandez et al., 2006 ; McPherson et
Jetz, 2007). The availability of both presence and absence data, and our consideration of a potential
sampling bias, may be other reasons for the quality of this model (Fletcher et Fortin, 2018). Interes-
tingly, the use of presence/absence data does not seem to explain either the main differences between
the graphs. Indeed, we used these same data for computing specialization indices and the metrics
deriving from the graph built from these indices were more similar to the metrics deriving from the
expert-based graphs as compared with those deriving from the SDM-derived graph. Therefore, the
choices made for delineating habitat patches and setting cost values seem to be equally important, if
not more, than the data used for modeling landscape graphs. This result is somehow in contradiction
with the common belief that the use of empirical data prevents from making arbitrary choices.
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Using suitability scores for delineating habitat patches produced less patches of larger sizes, partly
because of the smooth contrasts between suitability scores in areas dominated by suitable pixels. This
has already been observed (Bourdouxhe et al., 2020 ; Godet et Clauzel, 2021), although an opposite
result can also be obtained depending on the variables included in the SDM (Stevenson-Holt et al.,
2014) or when landscape features such as transport infrastructures are added to the cost surface deri-
ving from the SDM (Ziółkowska et al., 2012). The different correlations between genetic indices and
connectivity metrics deriving from the graphs could be due to these node differences.

In addition, the methods used for setting the cost values substantially affected our results. First,
the expert-based cost scenarios 1 and 2 differed by the range and the contrast of the cost values.
This led to different correlation levels and model fits when using either one or the other scenario
for computing metrics and cost-distances. The differences were larger in the case of cost-distances,
the scenario with the widest range (1-1000) being the best for explaining genetic distances. Besides,
the negative exponential function introduced by Keeley et al. (2016) for converting suitability scores
into cost values led to high cost values in widespread agricultural and artificial areas. Accordingly, we
obtained large cost-distance values between populations separated by large tracts of such land cover
types, which did not allow for predicting well the genetic distances between these populations. Yet, the
cost scenario based on specialization indices led to better predictions of these same genetic distances,
illustrating that two scenarios can be equally relevant for predicting genetic distances in the same
species, but in different areas. For this same reason, Reed et al. (2017) concluded that cost values
deriving from either telemetry data or expert opinion were complementary for connectivity analysis as
they were each equally validated when confronted to genetic data in different areas. Besides, methods
for converting suitability scores into cost values based on thresholds could have resulted in stronger
correlations between cost-distances and genetic distances, as in Wang et al. (2008) study.

The spatial scale of the analyses strongly influences the results
Finally, the scale at which the connections between populations or patches were considered largely

affected the results. Computing connectivity metrics by assigning connections between patches a large
weight at a larger scale (5000 m) than the optimal scale (< 3500 m) decreased the correlation between
these metrics and genetic responses. Interestingly, it tended to either under- or over-estimate patch
connectivity depending on the patch location within the island. Similarly, the set of links considered
for predicting genetic distances from cost-distances largely influenced the quality of the predictions,
and in differing ways depending on the cost scenario. Although these complex results partly stem
from the specific topography and spatial distribution of the Guadeloupe island forests, they recall the
importance of the "scale of effect" in landscape ecology (Jackson et Fahrig, 2012 ; Stuber et Gruber,
2020) and the importance of the topology of the population networks for the reliable assessment of
landscape genetic relationships (Savary et al., 2021a ; Van Strien, 2017). The sensitivity of landscape
graph modeling outputs to the spatial scale of the analysis should therefore be seen as equally im-
portant as their construction parameters. It also confirms that graph-based approaches are perfectly
suited for the consideration of scale effects, as outlined in seminal works (Keitt et al., 1997).

4.3 Implications for biodiversity conservation

Our results confirm the relevance of the wide range of graph-based methods specifically developed
for conservation purposes (Foltête et al., 2014 ; Tarabon et al., 2019 ; Zetterberg et al., 2010). Besides,
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we further illustrate how landscape graphs can be used for addressing conservation issues whether
genetic data are available or not.

Genetic data allowed us to assess the ecological validity of each graph element by implementing
a new cross-validation approach and by studying the rank differences of the patches according to
metrics computed differently. This evidenced that the Plumbeous warbler is positively affected by the
availability of forest areas at a restricted scale and negatively affected by the breaking apart of forest
patches even when large forest areas are located nearby (as in BT). We also distinguished populations
whose genetic differentiation mostly originated from the habitat pattern and matrix resistance, from
populations where other factors potentially explained it as the prediction errors associated with these
populations were consistently high. In the latter case, complementary field surveys should be carried
out. This illustrates that making the model limitations spatially-explicit using genetic data could ex-
pand the usefulness of the landscape graph approach for conservation modelling.

In contrast, when genetic data are not available, the optimal construction and analysis parameters
cannot be optimized but we showed that most parameters led to cost-distances and metrics significantly
explaining the genetic responses in our case study. Thus, although landscape graph modeling should
preferably be used for studying specialist species occupying discrete habitat patches (Urban et Keitt,
2001), it would continue to be a useful tool for addressing conservation issues in a wide range of
species for which genetic data acquisition is difficult or expensive. The availability and the quality of
either (i) information from literature or expert opinion or (ii) empirical data should determine the
graph construction method, as we here showed that empirical approaches were not necessarily the
most cost-effective ones.

4.4 Limits and perspectives

The connectivity models we validated using genetic data were reflecting the influence of habitat
connectivity on multi-generation drift and gene flow processes. However, other data such as GPS tracks
or interpatch movement data would better reflect daily or single-generation dispersal movements and
could be used for validating the spatial location of the graph links. Similar approaches have been im-
plemented for validating least cost path models (Driezen et al., 2007 ; Laliberté et St-Laurent, 2020)
and graph-based metrics (Poli et al., 2020).

Our approach could also be replicated for species with different ecological traits or habitat spe-
cialisation levels for assessing the usefulness of the landscape graph approach in a wider range of
situations. Indeed, habitat connectivity has been shown to affect species in different ways, including
among tropical forest birds (Radford et al., 2021). Finally, although we here used genetic data for
the a posteriori validation of landscape graphs built using empirical data or expert opinion, another
valid option would consist in using genetic data a priori, e.g. for optimizing cost values prior to graph
construction (Beier et al., 2008 ; Zeller et al., 2018).
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A - Supplementary tables

CLC initial category New category
Deciduous forest Forest
Mangrove Forest
Non-irrigated arable land Agricultural areas
Sugar cane Agricultural areas
Orchards Agricultural areas
Banana plantations Agricultural areas
Olive groves Agricultural areas
Complex cultivation patterns Agricultural areas
Land principally occupied by agriculture, with significant
areas of natural vegetation

Agricultural areas

Grasslands Open areas
Other natural grasslands and pastures Open areas
Sparse vegetation Open areas
Shrubland Semi-open areas
Sclerophillous vegetation Semi-open areas
Transitional forest and shrub vegetation stage Semi-open areas
Urban green areas Semi-natural areas
Bare rocks Semi-natural areas
Rivers and streams Rivers and lakes
Lakes and ponds Rivers and lakes
Coastal lagoon Rivers and lakes
Wetlands Wetlands
Ocean Ocean
Continuous urban fabric Artificial areas
Discontinuous urban fabric Artificial areas
Industrial or commercial units Artificial areas
Road and rail networks and associated land Artificial areas
Port areas Artificial areas
Airports Artificial areas
Mineral extraction sites Artificial areas
Dump sites Artificial areas
Construction sites Artificial areas
Sport and leisure facilities Artificial areas

Table 13 – Classification of the initial land cover categories from the CORINE Land Cover (CLC) database into nine
new land cover categories
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Vegetation formation Habitat
(Y/N)

Altitude thickets Y
Low-growth altitude thickets Y
Low-growth pioneer formations Y
Diversified sylvicultural areas Y
High-altitude formations Y
Limestone lowland forests Y
Coastal forests Y
Rain forests Y
Valley floor forests Y
Fallow lands with low-growth woody vegetation N
Coastal thickets N
Mangroves Y
Swamp forests Y
Mahogany forests Y
Semi-deciduous forests Y
Seasonal evergreen forests Y
Forests of agricultural areas Y

Table 14 – Vegetation formations of the 2010 map created by the Conseil Departemental of Guadeloupe, the IGN and
the ONF using manually interpreted aerial photographs. The "Habitat" column indicates whether the formation was

considered as being part of the Plumbeous warbler habitat according to the expert.

Pop.ID Island part Nb.ind. Ar MIW
F005 BT 8 4.14 15.86
F011 BT 6 4.33 25.22
F033 BT 8 5.26 39.38
F055 BT 28 4.89 83.58
F062 BT 27 4.89 388.55
F068 BT 30 4.88 250.20
F073 BT 52 4.67 36.01
F080 BT 52 4.52 16.16
F084 BT 15 4.83 67.19
F099 BT 29 4.57 134.50
F142 BT 23 4.28 20.04
F170 BT 26 3.99 15.49
F198 BT 12 4.23 15.88
FX01 BT 27 4.98 146.66
FX04 BT 19 4.89 88.90
FX07 BT 36 4.51 16.79
FX13 BT 21 4.88 25.55
FX15 BT 12 4.73 20.87
F002 GT 48 4.58 26.26
F006 GT 33 4.95 30.04
F007 GT 28 4.94 34.39
F181 GT 36 4.97 40.64
F196 GT 22 4.75 28.04
F217 GT 47 4.79 34.76
F229 GT 30 4.78 33.76
FX02 GT 19 4.90 31.06
FX14 GT 18 4.76 27.15

Table 15 – Genetic indices of each population
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B - Jacobs’ specialization index

The Jacobs’ specialization index was computed using the following formula (Jacobs, 1974) :

IJacobsik = rik − pi
rik + pi − 2rikpi

where rik is the ratio between the number of presence points nik of species k in land cover i and
the total number of presence points nk for species k (rik = nik

nk
) and pi is the ratio between the total

number of sampling points mi in land cover i and the total number m of sampling points.

C - Validation R-squared calculation

Training R2

For assessing the goodness-of-fit of a model explaining a response variable y with one or p predictor
variables x1, x2, . . . , xp, the coefficient of determination (R2) is computed by comparing the residual
and explained sum of squares (SSres., SSexp.) to the total sum of squares (SStot.) of the explained
variable y, such that :

R2 = 1− SSres.
SStot.

= 1−
∑n
i (yi − ŷi)2∑n
i (yi − ȳ)2

with n the number of observations, ŷi the predicted value of yi according to the model (e.g.
ŷi = β1x1i + β2x2i + . . .+ βpxpi) and ȳ the grand mean of y. By construction, we usually have :

SStot. = SSexp. + SSres.

such that the R2 can be interpreted as the share of the variance of y that is explained by the
model. It thus ranges from 0 to 1. We refer to this value as the training R2 because it is computed by
considering a given set of n observations for calibrating the model and assessing its goodness-of-fit.

Validation R2

Alternatively, the dataset can be splitted into several parts : a training dataset and a validation
dataset. In such a case, the training dataset is used for calibrating a model of the following form :

ŷit = β1x1it + β2x2it + . . .+ βpxpit

with ŷit and x1it referring respectively to the predicted value of the response variable and to the value
of the predictor variable x1 for the observation it included in the training dataset.

This same model can be used to predict the values of the response variable for the observations of
the validation dataset :

ŷiv = β1x1iv + β2x2iv + . . .+ βpxpiv

One way of assessing the goodness-of-fit of the model while taking into account its potential over-
fitting is then to compute a validation R2 from this independent predicted values. That is what we
did in this study. Because we used distance data and a particularly Leave-One-Out Cross Validation
method (cf. section 2.4.1), each observation corresponded to a population pair and the corresponding
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genetic distance was predicted twice (once every time one of the two populations was excluded from
the training dataset). We therefore computed the mean predicted values for each population pair to
obtain ŷiv values.

We then computed the validation R2 using the following formula :

R2
validation = 1− SSres.v

SStot.v
= 1−

∑n
i (yiv − ŷiv)2∑n
i (yiv − ȳv)2

Because the model is calibrated with the independent training dataset, there is no reason that
SStot.v = SSexp.v + SSres.v . In some cases, SSres.v can even be higher than SStot.v , such that the
validation R2 can be negative, in contrast with the training R2, which is always between 0 and 1.
However, negative validation R2 values mean that a model has a very low predictive accuracy.

D - Supplementary figures

A B

Figure 37 – (A) Land cover map used for building the expert-based and specialization index-derived landscape graphs
and (B) SDM raw suitability scores used for building the SDM-derived landscape graph.
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Figure 38 – ROC curve obtained with the SDM, leading to an AUC of 0.918.
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Exp. 1 Exp. 2

Spec. index-derived SDM-derived
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C D

Cost values
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Figure 39 – Cost surfaces obtained when applying the four cost scenarios : (A) expert-based 1, (B) expert-based 2,

(C) specialization index-derived, (D) SDM-derived. The same palette of colors is used for the four maps.
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Figure 40 – Expert-based landscape graph (cost scenario 1). (A) Map of the patches and links of the landscape graph,
and of the sampled bird populations. Only the links whose cost-distance values are not in the 95-100 % quantile of

values are displayed. Distribution of the cost-distance values associated with the landscape graph links displayed as an
histogram (B) or as boxplots (C). On these figures, the colors refer to the type of links considered (BT-BT, BT-GT,

GT-GT).
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Figure 41 – SDM-derived landscape graph. (A) Map of the patches and links of the landscape graph, and of the
sampled bird populations. Only the links whose cost-distance values are not in the 95-100 % quantile of values are

displayed. Distribution of the cost-distance values associated with the landscape graph links displayed as an histogram
(B) or as boxplots (C). On these figures, the colors refer to the type of links considered (BT-BT, BT-GT, GT-GT).
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Annexe A7

Cost distances and least cost paths respond
differently to cost scenario variations -
A sensitivity analysis of ecological connectivity
modeling

Abstract
Biodiversity conservation measures designed to ensure ecological connectivity depend on the reliable modeling of species

movements. Least cost path modeling makes it possible to identify the most likely dispersal paths within a landscape and
provide two items of ecological relevance : (i) the spatial location of these least cost paths (LCPs) and (ii) the accumulated
cost along them (’cost distance’, CD). This spatial analysis requires that cost values be assigned to every type of land cover.
The sensitivity of both LCPs and CDs to the cost scenarios has not been comprehensively assessed across realistic landscapes
and diverging cost scenarios. We therefore assessed it in diverse landscapes sampled over metropolitan France and with widely
diverging cost scenarios. The spatial overlap of the LCPs was more sensitive to the cost scenario than the CD values were.
Besides, highly correlated CD matrices could derive from very different cost scenarios. Although the range of the cost values
and the properties of each cost scenario significantly influenced the outputs of LCP modeling, landscape composition and
configuration variables also explained their variations. Accordingly we provide guidelines for the use of LCP modeling in
ecological studies and conservation planning.

Keywords : least cost path modeling, sensitivity analysis, ecological connectivity, spatial ecology, landscape ecology

Cet article a été re-soumis après des modifications mineures à l’International Journal of Geographical Information

Science en septembre 2021 :

Savary, P., Foltête, J. C. & Garnier, S. Cost distances and least cost paths respond differently to cost scenario variations

- A sensitivity analysis of ecological connectivity modeling. Submitted to International Journal of Geographical Infor-

mation Science
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1 Introduction

In the last decades, a variety of spatial models have been put forward for mapping and conserving
ecological connectivity, largely benefiting from the development of GIS tools and landscape ecology
theories (Rayfield et al., 2011 ; Zeller et al., 2012). Since the landscape matrix was shown to exert a
heterogeneous effect on species’ movement depending on its composition and configuration (Ricketts,
2001), landscapes have been represented as cost surfaces, i.e. raster grids on which every pixel value
is supposed to reflect resistance to movement. Modeling ecological connectivity on these surfaces then
consists in computing the paths followed by individuals for bridging pairs of habitat patches while
minimizing movement costs (Adriaensen et al., 2003). These ’least cost paths’ (LCP hereafter) provide
two kinds of ecological information : (i) their spatial location, i.e. the LCP itself, and (ii) the accumu-
lated cost summed along the LCP, also known as the ’cost distance’ (CD hereafter). Although similar
connectivity modeling approaches have been developed (Marrotte et Bowman, 2017 ; McRae, 2006
; Panzacchi et al., 2016), the relevance of LCP modeling continues to be reflected by their frequent
application in spatial analyses with decision-oriented aims such as wildlife linkage planning (Beier
et al., 2008 ; Carroll et al., 2012 ; Sawyer et al., 2011), invasive species control (Etherington et Perry,
2016) or in statistical analyses directed at hypothesis testing in ecological studies (Balbi et al., 2019 ;
Mony et al., 2018).

In this approach, cost values are key modeling inputs that most often depend upon the types of
land cover in which the pixels lie (Zeller et al., 2012). Their choice is frequently driven by knowledge
from literature surveys, field experience, or expert opinion regarding the movement behavior of the
study species (Clevenger et al., 2002 ; Pullinger et Johnson, 2010). Therefore an element of arbitrari-
ness remains at this stage, which could influence the outputs. On the one hand, different cost scenarios
can produce substantially different outputs if they differ widely in terms of the absolute values as-
signed to land cover types and the contrast between them (Gonzales et Gergel, 2007 ; Murekatete
et Shirabe, 2018 ; Rayfield et al., 2010). On the other hand, the order of the cost values assigned
to land cover types is known to influence CDs and LCPs (Beier et al., 2009). This order directly
reflects the preference of individuals for land cover types against others. Yet we may wonder whether
two highly correlated CD matrices or two sets of spatially equivalent LCPs could derive from cost
scenarios ranking land cover types in different orders. Although Murekatete et Shirabe (2018) have
assessed the influence of the distribution of cost values on LCPs, their study was based on simulated
landscapes and continuous cost ranges. Therefore an assessment of the sensitivity of LCP modeling in
real landscapes to changes in the distribution of discrete cost values commonly used by practitioners
in conservation modeling should be carried out.

In addition to cost values, the landscape structure in itself has been shown to influence the sensi-
tivity of CD values to cost scenarios in analyses relying on simplified simulated landscapes (Bowman
et al., 2020 ; Cushman et al., 2013b ; Marrotte et Bowman, 2017 ; Murekatete et Shirabe, 2018 ; Ray-
field et al., 2010 ; Simpkins et al., 2017). For example, CD values were less affected by variations of
scenarios when habitat areas were highly connected, according to the study of Cushman et al. (2013b).
However, a similar assessment over a wide range of existing landscapes is still lacking although it could
identify the range of realistic landscape contexts in which modeling results are the most dependent on
cost scenarios.
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Similarly few studies have assessed the sensitivity of the LCP spatial locations to variations of
cost scenarios. Beier et al. (2009) modeled a corridor providing a linkage between two Californian
protected areas using several expert-based cost scenarios. Although they concluded that this corridor
overlapped most of the alternative corridors modeled following alternative scenarios, these scenarios
were all somehow similar to a presumably realistic scenario and the cost values ranged from 1 to 10.
The relative resistance of land cover types is sometimes known by the experts but the plausibility of
the range of cost values cannot be known beforehand. Besides, when this range derives from empi-
rical observations, it is usually much wider (Khimoun et al., 2017 ; Ruiz-González et al., 2014). In
contrast, Pullinger et Johnson (2010) compared the paths followed by woodland caribou according to
GPS tracks to LCPs modeled under several cost scenarios. They reached more pessimistic conclusions
suggesting that the spatial location of LCPs is highly sensitive to cost scenarios. Given that a limited
number of scenarios were used in these rare studies with inconsistent findings (see Murekatete et Shi-
rabe (2018) for another example), the spatial overlap of LCPs remains to be investigated under more
variable scenarios.

In order to bring landscape resistance assumptions closer to ecological reality, a first step of connec-
tivity analysis often consists in inferring cost values from biological data and environmental variables
(Kadoya, 2009 ; Pressey, 2004). This can be done by converting presence or movement probabilities
deriving from species distribution models (SDM) or step selection functions based on telemetry data
into cost values (de la Torre et al., 2019 ; Duflot et al., 2018 ; Zeller et al., 2018). Alternatively, statis-
tical approaches have been developed for inferring cost values from the relationship between pairwise
CDs and pairwise genetic distances between populations occupying habitat patches (Peterman et al.,
2019 ; Peterman et Pope, 2020 ; Zeller et al., 2016). In this case, the cost value scenario leading to
the strongest statistical relationship between CD and pairwise genetic distances is supposed to reflect
the CD perceived by individuals during their dispersal movements leading to gene flow. The set of
inferred cost values associated with land cover types is then the input of LCP modeling. Their absolute
values, rank, and contrasts inherently contain information of ecological relevance, making it possible
to determine that one land cover type is more resistant than another, or to ascertain how many times
more resistant it is, among other interpretations (see Khimoun et al. (2017) or Ruiz-González et al.
(2014) for an illustration).

However, the latter statistical approaches may be unable to identify the cost scenario closest to
the real ecological situation when competing scenarios lead to highly correlated CD values because
they may be equally correlated to the pairwise biological response used for the inference (Zeller et al.,
2016). This reinforces the need to understand how cost value distributions and landscape structure
influence the sensitivity of LCP modeling to cost scenarios. Similarly we do not know precisely whe-
ther optimization approaches maximizing the strength of a statistical relationship between pairwise
biological responses and CDs under several scenarios can lead to reliable predictions of the spatial
location of LCPs. Two highly correlated CD matrices computed from the same locations but using
different scenarios could lead to spatially distinct LCPs. Using either one or the other set of CD va-
lues in a statistical analysis would not significantly affect the output and both cost scenarios could
be assigned the same likelihood from an inference using empirical data. In contrast, the choice of
one of them would largely influence the LCP, potentially leading to the implementation of spatially
inadequate conservation measures. In sum, although it has already been shown that LCPs and CDs
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are sensitive to both the cost scenarios and the landscape contexts in which they are computed, the
relative sensitivities of these outputs and their main drivers need to be investigated simultaneously
and in a realistic context if the reliability of connectivity analysis is to be improved.

In this study, we assessed the sensitivity of both LCP spatial locations and corresponding CD values
deriving from LCP modeling to variations in cost scenarios. For that purpose, we randomly sampled
77 existing landscapes, geolocated points within them, and computed LCPs and the corresponding
CDs under 100 widely diverging cost scenarios. We fixed an arbitrary but plausible scenario that
we considered as the ecological ’truth’. We then assessed (i) the correlation between alternative CD
matrices and the true CD matrix and (ii) the spatial overlap between the alternative LCP and the true
ones. Finally we performed statistical analyses to identify the drivers of the sensitivity of CD values
and LCPs to the cost scenario. This novel approach allowed us to identify (i) landscape contexts and
(ii) cost scenario characteristics influencing the sensitivity of LCP modeling to cost scenarios.

2 Methods

2.1 Landscape sampling

With the aim of providing guidelines for LCP modeling in realistic conditions, we randomly sam-
pled 250 landscapes of 30 km × 30 km with a spatial resolution of 10 m across metropolitan France
from the OSO land cover raster map (Inglada et al., 2017). This map is based on remote sensing
imagery and initially included 23 land cover types. As this thematic resolution did not reflect the sim-
plified land cover maps commonly used for connectivity modeling and would not have allowed a fine
assessment of the influence of the cost assigned to each land cover type, we reclassified it into five land
cover types : (1) forests, (2) grasslands and woody perennial crops (grasslands hereafter), (3) annual
crops, (4) artificial areas (built-up land, roads and transport infrastructures), and (5) others (water
and other land cover types). The spatial and thematic resolutions of this raster layer allowed us to
correctly account for the barrier effects of linear landscape features such as transport infrastructures,
which can largely influence LCP modeling (Hoover et al., 2020).

We considered the landscape constraints on movement faced by an arbitrary forest species and
we therefore only conserved the sampled landscapes with a proportion of forest above 15 %. This
proportion of habitat is close to the threshold below which a specialist forest species becomes extinct
(Balkenhol et al., 2013 ; Hanski et al., 1996). To prevent the results from being influenced by the
absence of one of the land cover types while allowing the land cover type proportions to vary substan-
tially, we ensured that the proportion of grasslands, crops and artificial areas were above 5%, 5%, and
2% respectively. Finally, we removed coastal landscapes including large maritime areas, which led us
to retain 77 landscapes for the analyses (cf. section 3.1).

2.2 Cost scenario creation

For comparative purposes, we chose a reference cost scenario (’true scenario’ hereafter), in which
the cost values associated with forests, grasslands, crops, artificial areas and water and other land co-
ver types were respectively 1, 10, 100, 1000 and 100. They reflected the movement behavior of a forest
specialist species. Note that similar cost values have already been used for modeling connectivity for
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forest species (Gurrutxaga et al., 2010 ; Schadt et al., 2002) and a similar range (1-1000) has already
been inferred from field data (Khimoun et al., 2017 ; Pérez-Espona et al., 2008 ; Ruiz-González et al.,
2014 ; Wang et al., 2008).

In order to test for the sensitivity of LCP modeling to cost scenarios, we randomly created 100
widely different alternative cost scenarios. They differed by both the order of the land cover types and
the contrast between cost values. We used Shirk et al. (2010) approach to set cost values using the
following function :

Ci = ( Ranki
Rankmax

)x × Cmax

where Ci is the cost value between 1 and Cmax = 1000 associated with the i-th land cover type. Ranki
is the rank of the land cover type i between 1 and Rankmax = 4. We used x values equal to 1, 2, 4, 8
or 16. We therefore obtained five series of values : [1, 1, 11, 1000], [1, 4, 11, 1000], [4, 63, 317, 1000],
[63, 250, 563, 1000], [250, 500, 750, 1000](Supporting information, figure 49). Using each of them,
we randomly assigned cost values to forests, grasslands, crops and artificial areas before randomly
selecting 100 alternative cost scenarios among these combinations. The cost value associated with
water and other land cover types was set to 100 in each cost scenario in order to limit the number of
combinations to test and because this land cover type was absent from several landscapes.

2.3 Least cost path modeling

In every landscape, we randomly selected 50 point locations within forest patches, separated by a
distance of more than 500 m. We then computed LCPs between every pair of points in every landscape
and under every cost scenario (Figure 42A). We thus obtained in each case a set of LCPs and the
corresponding 50 × 50 pairwise CD matrix. We created buffer zones of 200 m on each side of every
spatial line and merged them. We call these polygons of equal width around least cost paths least cost
corridors hereafter.

2.4 Spatial and distance-based comparisons of LCPs

We first measured the proportion of the area of every true least cost corridor between a pair of
locations that was overlapped by the corresponding alternative least cost corridor. We averaged the
1225 values obtained when considering every pair of locations, thereby obtaining a spatial overlap
measure for each combination of a landscape and an alternative cost scenario. Besides, we assessed
the statistical relationship between each alternative CD matrix and the true one by computing their
Mantel r correlation coefficient (Mantel, 1967). This coefficient is commonly used for assessing the
relationship between distance matrices.

2.5 Landscape structure and cost scenario descriptors

We first aimed to explain the sensitivity of LCP modeling to the cost scenarios according to land-
scape structure. To that end, we computed the proportion of forests, grasslands, crops, and artificial
areas in every landscape (landscape composition variables). We also computed the Shannon index as
a landscape composition diversity variable. It was divided by log(n) where n is the number of land
cover types so that it ranges from 0 to 1. In order to assess the influence of landscape configuration,
we computed several fragstats configuration metrics (McGarigal, 1995). At the landscape level, we
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Figure 42 – Schematic representation of (A) the spatial and distance-based comparisons of the LCP computed under
true and K = 100 alternative cost scenarios within N = 77 landscapes, and of (B) the statistical analyses performed for
assessing the sensitivity of LCP modeling to cost scenarios. We performed separate two-way ANOVA for assessing the
respective influences of the landscape and cost scenario on (i) the spatial overlap and (ii) the Mantel correlations. Then

we assessed the influence of landscape composition and configuration on the sensitivity of LCP modeling to cost
scenarios in every landscape (mean and coefficient of variation across scenarios) by carrying out a PLS-R2 regression.
We identified the characteristics of the cost scenarios explaining the values of spatial overlap and Mantel correlations
averaged across landscapes for every cost scenario with a regression tree. Finally, we assessed the relationship between
the spatial overlap and the Mantel correlations for every combination of the landscape and cost scenario by displaying

it on a scatterplot. The numbers in italics at the bottom-right of the figure refer to the results section where the
corresponding results are described.
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computed the contagion index which reflects the degree of aggregation of the cells of the same land
cover type. For the two land cover types that were assigned extreme cost values in the true scenario,
i.e. forest and artificial areas, we computed the number of patches, the shape complexity, and the
’clumpy’ index of fragmentation. Finally, as a way to assess the global permeability of the landscapes,
we computed the sum of the pixel costs on each landscape according to the true scenario.

In parallel, we aimed at explaining the sensitivity of LCP modeling in the different landscapes
according to the cost value distribution of each scenario. For that purpose, we first computed binary
variables indicating whether each alternative scenario ordered land cover types in the same way as
the true scenario does, or whether the contrast of the cost values was similar. In the latter case,
we considered that the cost values [1, 4, 101, 1000] were the closest to the true contrast. Finally we
identified the pairs of land cover types that were not ordered in the same way as in the true scenario.

2.6 Statistical analyses of the drivers of LCP modeling sensitivity to cost scenarios

The values of (i) the Mantel r correlation coefficients between true and alternative CD matrices
(Mantel correlation hereafter) and of (ii) the proportions of spatial overlap of the alternative least
cost corridors with the true ones (spatial overlap hereafter) were supposed to reflect the sensitivity
of LCP modeling to cost values. The greater the variability of these metrics in a given landscape for
the different scenarios, the greater the sensitivity of LCP modeling in this landscape. Besides, for a
given cost scenario, these metrics took values across the landscapes reflecting the overall similarity of
this scenario to the true scenario. By computing these two metrics in every landscape and for every
cost scenario (2 × 77 × 100 values), we could compare their sensitivity, assess whether and to what
extent the landscape structure explained their sensitivity and identify which characteristics of the cost
scenarios make them similar to the true scenario. Accordingly, we first performed separate two-way
anova of these two metrics by considering the cost scenario and landscape as the factor variables
explaining their variations (Figure 42 B1). This allowed us to quantify the contribution of each factor
to the variations of both Mantel correlations and spatial overlaps.

Then we studied whether landscape composition and configuration variables could explain the sen-
sitivity to cost scenarios (Figure 42 B2). For that purpose, we computed the mean and coefficient of
variation of the Mantel correlations and of the spatial overlaps for each landscape across the different
cost scenarios. Large mean values indicate that, independently of the cost scenario, the Mantel corre-
lations or spatial overlaps tend to be high for a given landscape, whereas large coefficients of variation
indicate that these metrics are highly variable depending on the cost scenario for a given landscape.
We then modeled these numeric indicators as a function of the landscape variables. We carried out
two separate Partial Least Squares (PLS) regressions with the mean and the coefficient of variation of
these two metrics as the response variables (one model for each metric) and the landscape variables as
the predictor variables. PLS regressions are an alternative to multiple linear regression and principal
component regression (Carrascal et al., 2009 ; Roy et al., 2015 ; Wold et al., 2001), particularly suitable
for cases in which predictor variables are collinear. This type of regression identifies the factorial space
components that simultaneously maximize the explained variance of the response variables and of the
predictor variables. This makes it possible to model a set of response variables (PLS-R2). Following
Tenenhaus (1998), we computed the Q2 index to assess the role of every component for improving
the prediction of the response variables when performing leave-one-out cross-validation. We described
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only the results regarding the effects of the components which significantly improved the prediction
of the response variables, i.e. when the Q2 associated with these components were larger than 0.0975.

Finally, we aimed at identifying the characteristics of the cost scenarios driving the sensitivity
of LCP modeling to cost scenarios (Figure 42 B3). We computed the mean values of the Mantel
correlations and of the spatial overlaps for each cost scenario across the different landscapes. High
values indicate that, independently of the landscape, a given cost scenario leads to LCPs and CDs
that are very similar to those derived from the true scenario. We expected this similarity to be explained
by the raw cost values of each cost scenario, by their orders and contrasts and by their differences with
those of the true scenario (cf. previous section). In order to obtain a decision tree showing the cost
scenario characteristics leading to the similarity of LCP modeling outputs with the true ones, we built
regression trees (Breiman et al., 1984) to explain either the mean Mantel correlation or mean spatial
overlap as a function of the cost scenario characteristics. This method involves splitting the predictor
space into a limited number of regions called leaves in which the response variable is predicted to
take its mean value within the leaf (James et al., 2013). These trees can take both continuous and
categorical predictor variables and have been shown to perform better than linear models in the
presence of non-linear relationships. They were pruned according to a cost-complexity criterion to
prevent overfitting, using rpart package (Therneau et al., 2010) in R.

3 Results

3.1 Structure of the sampled landscapes

After applying our selection criteria to the sampled landscapes, we ended up with 77 landscapes
(Figure 43), all very different in terms of both landscape composition (land cover type proportions and
diversity) and configuration (fragmentation, number of patches, and contagion)(Table 16). This sample
included fine-grained and coarse-grained agricultural landscapes (Figures 43A and 43F, respectively)
and widely forested landscapes in both lowlands and highlands (Figures 43G and 43C, respectively).

Variable Minimum Median Maximum

% forest (15 - 100) 15.61 28.57 79.16
% grasslands (5 - 100) 5.38 26.43 69.66
% crops (5 - 100) 5.08 21.97 59.98
% artificial areas (2 - 100) 2.04 8.42 24.65
Shannon div. index (0 - 1) 0.46 0.75 0.93
Frag. forest patches (’clumpy’) (-1 - 1) 0.81 0.93 0.97
Frag. artif. patches (’clumpy’) (-1 - 1) 0.67 0.79 0.91
Nb. forest patches (0 - 9× 106) 2467 6563 31918
Nb. artif. patches (0 - 9× 106) 7602 18610 48569
Shape complex. forest patches (>1) 1.24 1.39 1.49
Shape complex. artif. patches (>1) 1.29 1.36 1.43
Contagion (0 - 100) 46.24 58.29 74.60
Total cost (×109)(0.009 - 9) 0.41 1.09 2.34

Table 16 – Landscape characteristic distributions observed among the 77 sampled landscapes. The possible range of
variation of the variables is shown in brackets after the variable name.
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Figure 43 – Results of the landscape sampling : 77 landscapes of 30 km × 30 km with a spatial resolution of 10 m
were randomly sampled across metropolitan France. They were filtered applying the following criteria : > 15 % forests,
> 5 % grasslands, > 5 % crops, > 2 % artificial areas. Fifty points were randomly sampled in the forest areas, all more

than 500 m apart. Eight contrasted examples (A to H) are shown on the map.
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3.2 Relative influences of cost values and landscape structure on the sensitivity
of LCP modeling outputs

The Mantel correlations ranged from -0.40 to 0.99 and the spatial overlaps exhibited similar varia-
tions (from 7% to 94%) but never reached 100%, their theoretical maximum (Figure 44, see figure 50
for a similar variation using the Spearman Mantel correlation coefficient). This indicates that the wide
range of cost scenarios we considered was sufficient for creating contrasted outputs and studying their
variability and its drivers. The variance of the spatial overlap for every combination of a landscape and
a cost scenario was accounted for much more by the cost scenario than by the landscape considered (F
values from the two-way ANOVA : 498.17 vs 33.71, respectively), although both influences were highly
significant. Indeed the cost scenario and the landscape together explained 87% of the variance of this
metric but applying the same cost scenario to the different landscapes led to lower variations in terms of
spatial overlap than applying the different scenarios to the same landscape did (Figures 44A and 44B).

The cost scenario and the landscape together explained a slightly lower yet significant share of
variance of the Mantel correlations (79 %). Similarly the magnitude of variation of the Mantel cor-
relations was much lower for a given cost scenario across the landscapes than for a given landscape
across the cost scenarios (F values from the two-way ANOVA : 235.39 vs 67.34, respectively, both
highly significant, Figures 44C and 44D).

The spatial overlap was more sensitive to the cost scenario than the Mantel correlation, as shown
by the rapid decrease of the median spatial overlaps computed with each cost scenario (Figure 44A)
compared with the slower decrease of the median Mantel correlations (Figure 44B). In contrast, when
considering the distribution of these two metrics for each landscape across the different cost scenarios,
we observed less variation for the spatial overlap than for the Mantel correlations (Figures 44B and
44D). Indeed the spatial overlaps across the cost scenarios were overall small for a given landscape
(Figure 44B). In contrast, the Mantel correlations were much more variable (Figure 44D) and consis-
tently took large values in some landscapes, whereas they took smaller values with larger variations
in others.

3.3 Landscape structure influence on the sensitivity of LCP modeling outputs

The PLS regressions identified the landscape variables responsible for the sensitivity of LCP mo-
deling to the cost scenarios. Only the first component of the PLS regression explaining the mean and
the coefficient of variation of the spatial overlaps across the cost scenarios had a significant effect
(Q2 = 0.34, Figure 45A). The mean spatial overlap was highly and positively correlated to the first
component of the PLS whereas the coefficient of variation of this variable was only slightly correlated
and not significantly explained by this component. The mean spatial overlap was positively influenced
by the contagion variable and by the proportion of forests in the landscapes, and negatively influenced
by the total cost of the landscape, the Shannon diversity index, the number of patches of artificial
area and of forest, and by the proportion of artificial areas (Figure 45A). This means that the spatial
overlap was higher in landscapes relatively favorable to species movements, with little diversified land
cover types dominated by forests and containing large and aggregated patches.
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Figure 44 – Distribution of the spatial overlap (A, B) or the Mantel correlations (C, D) according to the cost scenario
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Figure 45 – Projection of the response (dark blue labels) and predictor variables (black labels) of the PLS-R2
regression in the factorial space derived from the two first components (t1, t2). The left panel (A) shows the results

obtained when modeling the mean and coefficient of variation of the spatial overlap in a given landscape across all the
cost scenarios whereas the right panel (B) shows results obtained when modeling the mean and coefficient of variation
of the Mantel correlation in a given landscape across all the cost scenarios. The axis labels indicate the percentage of
variance of the predictor variables table (R2x) or of the response variables table (R2y) explained by each component
(t1 or t2), as well as the percentage of variance of the response variables table explained by these components when

performing a cross-validation (Q2).

Similarly only the first component of the PLS regression explaining the mean and the coefficient
of variation of the Mantel correlations for a given landscape had a significant effect (Q2 = 0.26,
Figure 45B). This component was positively correlated with the mean Mantel correlation whereas it
was negatively correlated with its coefficient of variation. Mean correlation coefficients were positively
influenced by the contagion index. Conversely the coefficients of variation of these coefficients were
positively influenced by the total cost of the landscape, the Shannon diversity index, the proportion of
crops and artificial areas, the shape complexity of the forest patches, and the Clumpy index of forest
and artificial area patches. This means that CD matrices consistently exhibited high correlations with
the true CD matrix in landscapes with large contiguous patches. In contrast, alternative CD matrices
tended to be less strongly and more variably correlated with the true CD in diverse landscapes with
complex patch shapes and large areas of the least favorable land cover types.

3.4 Cost scenario characteristics influence on the sensitivity of LCP modeling
outputs

The regression trees identified the cost scenario characteristics explaining their spatial overlaps
and Mantel correlations with the true scenario across the different landscapes (Figure 46). The first
split of the two regression trees created were conditions regarding the cost value assigned to forest.
Indeed, cost scenarios with forest cost values lower than 82 led to mean spatial overlaps averaging
40% (Figure 46A). Conversely the cost scenarios assigning forests a cost value lower than 875 (i.e.
different from 1000) led to mean Mantel correlations averaging 0.63 across landscapes (Figure 46B).
Interestingly, when the forest cost value was equal to 1000, if the cost values were drawn from either
the [63, 250, 563, 1000] or [250, 500, 750, 1000] gradients, the Mantel correlations still averaged 0.55
although such cost scenarios differed largely from the true one. In this case, assigning much lower cost
values to grasslands, crops, and artificial areas ([1, 1, 11], [1, 4, 101], or [4, 63, 317]) led to negligible
Mantel correlations (Figure 46B). Accordingly, the gradient of values of the cost scenarios was the
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Figure 46 – Regression trees explaining the mean spatial overlap (A) or the mean Mantel correlation across
landscapes for each cost scenario as a function of the characteristics of the distribution of the cost values. At each node
(branch split), the criterion displayed is verified in all the leaves stemming from branches located on the left side of the
split, whereas its opposite is verified in all the leaves stemming from branches located on the right side of the split. The
colored boxes indicate the mean value of the response variable across all the leaves stemming from a given node (in

bold) and the number of observations, i.e. cost scenarios, included in these leaves (in italics).

second most important criterion explaining the Mantel correlations obtained across the landscapes for
a given cost scenario.

In contrast, the second most important criterion explaining the spatial overlap was the difference
between cost values assigned to forest and grassland, which are the two least resistant land cover types
in the true scenario (Figure 46A). Making forests more resistant than grasslands invariably reduced
the spatial overlap with the true LCP. Finally, in both trees, the other splitting criteria concerned the
costs associated with crops and artificial areas. For example, when forest cost value is both lower than
82 and lower than the grassland cost value, assigning artificial areas a cost value lower than 37 (true
cost value : 1000) led to spatial overlaps averaging 33 %, which is a rather large value in light of the
range of variation. Similarly, provided the cost value was lower than 284 for forests, greater than 8
for the crops and greater than 82 for artificial areas, the mean Mantel correlation across landscapes
averaged over the corresponding scenarios reached 0.8, independently of the order of cost values and
the contrast between them. The binary variables comparing each scenario to the true one in terms of
order and contrasts were not retained in the best trees computed for both metrics.

3.5 Relationship between the spatial overlap of LCP and the correlation between
CD matrices

From the application of every alternative cost scenario in every landscape (7700 combinations),
we observed that the spatial overlaps and the Mantel correlations were somehow related (Spearman’s
r = 0.66) but their relationship was highly non-linear (Figure 47). Spatial overlaps above 65% were
only obtained with LCPs whose associated CDs were moderately to highly correlated with the true
CD (r > 0.5, Figure 47). Yet the degree of correlation between CD matrices was a poor proxy for the
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created from each alternative LCP. n = 7700, corresponding to the combination of 100 cost scenarios and 77
landscapes. Red dots correspond to alternative cost scenarios ordering the four land cover types in the same way as in

the true cost scenario.

spatial overlap of LCPs. Indeed, spatial overlaps below 20% were frequently obtained while corres-
ponding CD matrices were highly correlated with the true CD matrix (r > 0.9, Figure 47 and Table 17).

In addition, spatial overlaps above 80% were mostly observed when land cover types were arran-
ged in the same order of resistance as in the true cost scenario (Figure 47). However, some scenarios
incorrectly ordering these land cover types still reached spatial overlaps up to 91%. The cost scena-
rio leading to the largest Mantel correlations was [1, 4, 101, 1000](for forest, grasslands, crops, and
artificial areas, respectively ; Mantel r : mean across landscapes = 0.98, Table 17). This scenario was
apparently the most similar to the true one (i.e. [1, 10, 100, 1000]) in terms of order and contrast
of the cost values but surprisingly the mean spatial overlap of the corresponding LCP across the 77
landscapes was not the maximum (77.81% vs 81.00%, Table 17). Indeed, the best scenario in terms of
spatial overlap was [4, 63, 317, 1000] and also led to CD values highly correlated with the true ones
(mean Mantel correlation across landscapes = 0.96).

Although the best cost scenarios in terms of spatial overlap always assigned a larger cost value to
grasslands than they did to forests, they did not systematically assign a larger cost value to artificial
areas than they did to crops (e.g. scenario [1, 4, 1000, 101] : mean spatial overlap : 68.04%, Table
17). In contrast, in the ten cost scenarios with the strongest Mantel correlations, two cost scenarios
assigned a lower cost to grasslands than they did to forests. If the Mantel correlations obtained in
these two cases were above 0.85, the corresponding spatial overlaps were nevertheless below 40%.

Finally, when projected into a spatially-explicit layout, we observed large differences between LCPs
resulting from different cost scenarios (Supporting information, figure 48). Interestingly, even highly
correlated CD matrices could be derived from LCPs diverging rather markedly from each other.
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Figure 48 – Spatial representation of the influence of cost scenarios on least cost path locations. The least cost
corridor between two locations computed applying the true cost values to land cover types is displayed in red on the
map. Alternative least cost paths computed using other cost values are displayed with colors reflecting the mean
Mantel correlation between the corresponding alternative cost distance matrices and the true cost distance matrix
(including all the paths computed on this landscape). Scenarios A, B, C, and D are examples of cost scenarios that
diverge to varying degrees from the true one. Their corresponding costs are in the table included in this figure.
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Forest Grasslands Crops Artif For. <Grass. Order % overlap Mantel r

1 4 101 1000 Yes Same 77.81 0.98
4 63 317 1000 Yes Same 81.00 0.96
1 4 1000 101 Yes Diff. 68.04 0.88
4 1 101 1000 No Diff. 25.78 0.88
4 317 63 1000 Yes Diff. 58.83 0.87
1 1 11 1000 No Diff. 36.86 0.87
63 250 563 1000 Yes Same 56.08 0.86
63 563 1000 250 Yes Diff. 55.52 0.84
63 563 250 1000 Yes Diff. 54.59 0.84
1 101 4 1000 Yes Diff. 54.44 0.83
63 1000 563 250 Yes Diff. 52.25 0.83
63 1000 250 563 Yes Diff. 51.60 0.83
1 11 1 1000 Yes Diff. 45.86 0.81
4 317 1000 63 Yes Diff. 57.19 0.81
250 500 1000 750 Yes Diff. 40.09 0.79
250 750 1000 500 Yes Diff. 41.67 0.79
4 1000 63 317 Yes Diff. 53.70 0.79
250 500 750 1000 Yes Same 39.80 0.79
250 1000 750 500 Yes Diff. 41.89 0.79
250 750 500 1000 Yes Diff. 40.13 0.78
4 1000 317 63 Yes Diff. 52.70 0.76
1 11 1000 1 Yes Diff. 43.99 0.74
1 1000 4 101 Yes Diff. 48.63 0.67
1 1000 101 4 Yes Diff. 47.03 0.62

Table 17 – Differences between the alternative cost scenarios and the true cost scenario. We included the cost
scenarios with the 20 highest mean proportions of spatial overlaps or mean Mantel correlation coefficients (24 scenarios
in total). They are ordered in descending order of Mantel correlation coefficient (Mantel r). Their spatial overlap with
the LCPs derived from the true cost scenario are displayed (% overlap). The 10 largest values of the columns ’Mantel r’
and ’% overlap’ are displayed in bold. Values obtained for all LCPs, CD matrices and landscapes have been averaged

for each cost scenario. Cost values associated with each of the four land cover types are included in the ’Forest’,
’Grasslands’, ’Crops’, and ’Artif’ columns. The ’For. < Grass.’ column indicates whether the cost value associated with
forest is lower than that associated with grasslands. The ’Order’ column indicates whether cost values associated with

land cover types in each alternative cost scenario follow the same order as those in the true cost scenario.

4 Discussion

Using a wide range of cost scenarios in real diversified landscapes, we analyzed the relative sensi-
tivities of both LCP spatial locations and CD values to the choice of cost values and identified their
drivers. As expected, these outputs of LCP modeling were sensitive to the cost scenarios but their
sensitivities differed and were not influenced by the same characteristics of the cost scenarios, nor to
the same extent according to landscape structure.

4.1 Sensitivity of LCP and CD to cost scenarios

The spatial overlap of LCP is very sensitive to the cost scenario
An analysis of the spatial sensitivity of LCP modeling to widely diverging scenarios was lacking. Using
the spatial overlap between true and alternative LCPs obtained from different cost scenarios as a mea-
sure of sensitivity, we showed that LCPs are highly dependent upon the cost scenarios given that just
a few scenarios allowed us to reach large proportions of overlap with the true LCPs. Previous studies
regarding the spatial overlaps of LCPs provided inconsistent findings. Pullinger et Johnson (2010) sho-
wed that LCPs did not follow caribou GPS tracks, whereas Beier et al. (2009) obtained large spatial
overlaps of alternative corridors between two protected areas. Our results can explain these opposing
conclusions. Although the cost scenario was the main driver of the spatial overlap, in landscapes with
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large proportions of favorable land cover types, large contiguous patches and a low diversity of land
cover types, the spatial overlap between true and alternative LCPs tended to be larger. In this case,
using similar scenarios in terms of cost value order and range would lead to large spatial overlaps
across the scenarios. This could potentially explain the results of Beier et al. (2009) because these
authors used a set of biologically plausible cost scenarios. In contrast, in fine-grained landscapes with
the highest diversity of land cover types and the largest proportions of adverse land cover types, the
spatial overlap was consistently low. This situation could reflect the study by Pullinger et Johnson
(2010), performed in a landscape in which very contrasted altitude classes were intersected with 10
different land cover types to define a fine-grained permeability map. This also indicates that the the-
matic resolution of land cover maps could influence the outputs of LCP modeling by influencing their
grain and diversity, although spatial resolution is often given more consideration (Lechner et Rhodes,
2016).

Highly correlated CD matrices can derive from very different cost scenarios
We studied the sensitivity of the statistical properties of CD to cost scenarios by comparing the Mantel
correlations between the true CD matrix and every alternative CD matrix. Our results showed that
CD matrices highly correlated to the true one can be obtained using several cost scenarios differing
widely from the true cost scenario. Besides, although the sensitivity of this correlation depended more
on the characteristics of the cost scenarios, the landscape context was also responsible for the variable
sensitivity to cost scenarios observed in the different landscapes. In landscapes with large amounts of
favorable land cover types and large patches, whatever the alternative cost scenario, the CD matrices
tended to be highly correlated with the true CD matrix. Conversely, in diverse landscapes with patches
of complex shapes, correlations with the true CD were lower and much more variable. This result re-
calls those of Cushman et al. (2013b) showing that Euclidean distances and CDs were equivalent for
explaining genetic distances when the proportion of habitat in the landscape is high and the contrast
between cost values is low.

Highly correlated CD matrices can derive from spatially distinct LCPs
Spatial overlaps and Mantel correlations exhibited different sensitivity to cost scenarios when consi-
dered separately. The main contribution and novelty of our analyses is to provide insights into the
relationship between the spatial locations of LCPs and their corresponding CD values, and into the
drivers of the mismatches between them. We first showed that two highly correlated CD matrices can
derive from paths whose spatial overlap is very low (as low as 15% with correlation coefficients above
0.9). Nevertheless, the reverse does not hold true because large spatial overlaps between paths invaria-
bly involve high correlations between CD matrices. This result is explained by the greater sensitivity
to cost scenarios of the LCPs than the corresponding CDs.

These contrasted sensitivities partly stem from the fact that LCPs and CDs are not influenced
by the same characteristics of cost scenarios. While the relative order of the cost values associated
with the least resistant land cover types (forests and grasslands) is a key factor explaining the spatial
overlap of a given cost scenario with the true scenario, the correlation of alternative CDs with the true
CDs depended more heavily on the gradient of cost values. This seems logical given that the order of
the cost values determines whether the path should better cross some land cover types than others,
whereas the gradient of cost values determines the CD statistical distribution independently of the
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spatial location of the corresponding LCP. Interestingly, when the least resistant land cover type was
assigned a large cost value (forest : 1000), limiting the contrast with the costs of other land cover types
still led to CDs highly correlated with the true CDs. Such strong correlations between CDs deriving
from the most homogeneous cost scenarios and the reference CD recall the strong correlations often
observed between CDs and Euclidean distances (Marrotte et Bowman, 2017). This strong correlation
has been a reason for preferring the accumulated cost along the LCP (CD) over the length of the
LCP as a measure of connectivity (Etherington et Holland, 2013 ; Simpkins et al., 2018). However,
the dependence of CDs upon Euclidean distances is still a limitation of this measure and can make it
difficult to distinguish several CD matrices.

Furthermore, although the cost scenario being at first sight the most similar to the true scenario
([1, 4, 101, 1000] vs [1, 10, 100, 1000]) led to the CDs most strongly correlated with the true CDs,
it did not lead to the highest spatial overlap with the true LCPs, obtained with the scenario [4, 63,
317, 1000]. This could be explained by the sensitivity of LCPs to the contrasts of cost values between
the least resistant land cover types, the ratios 4/63 and 63/317 being both closer to 1/10 and 10/100
than 1/4 and 4/100.

4.2 Implications for cost value inference and LCP modeling

Ecological interpretations and use of inferred cost values must be subject to caution
The statistical distribution of two CD matrices can be almost identical although they correspond to
spatially distinct LCPs that derive from cost scenarios implying different ecological interpretations.
Assuming that cost value inference from biological data depends essentially upon the statistical pro-
perties of CD matrices, care has to be taken when interpreting inferred cost values and using them for
mapping LCPs. Similarly the cost scenarios leading to the largest spatial overlap are not necessarily
the scenarios whose values are most like the true cost values. Indeed, given that inferred cost values
may be closely related to the statistical properties of the CDs, these inferred cost values should better
reflect the gradient of cost values and the difference between the lowest and largest cost values than
their relative order. Note that this limitation does not concern the cost values inferred from presence or
telemetry data. Yet, in the latter case, the method used for converting SDM or step selection function
outputs into cost values could significantly affect CD statistical distribution by determining the range
and contrasts between these values.

Outline solutions for the use of inferred cost values in LCP modeling
When LCP modeling supports decision-making in conservation, the spatial location of the LCP can
be used to design restoration measures such as wildlife crossings for example (Clevenger et al., 2002
; Mimet et al., 2016). Such a location optimization based upon LCPs can be suboptimal due to the
sensitivity of these paths to the cost scenario. Although it may be problematic when LCP modeling
is based upon cost values inferred from the relationship between CDs and biological data, we provide
outline solutions to this problem. First, the scenario leading to the highest spatial overlap with the
true LCPs was always within the scenarios leading to the CD matrices most closely correlated with
the true one. This means that the set of cost scenarios closely reflecting the true landscape constraints
on movements share similar statistical properties and could be retained as the ’best ones’ in cost value
inference. Our results thus call into question the common practice of optimization of a single best cost
scenario. Rather than retaining the single ’best’ cost scenario from the inference, retaining a set made
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of several best scenarios could ensure that the ’ecological truth’ is part of the inference results. This
strategy is not unlike the use of Circuitscape software (McRae et Beier, 2007), which models several
alternative paths between locations in a landscape considered as an electric circuit. Similarly, Pinto
et Keitt (2009) developed methods for modeling multiple shortest paths between habitat patches and
Rayfield et al. (2010) suggested identifying such multiple low-cost routes for coping with the sensiti-
vity of LCP modeling. The Linkage Mapper software (McRae et Kavanagh, 2011) makes this possible
by creating least cost corridors of varying width according to the cost surface, which could provide
insight into the existence of alternative and equally probable paths around the least cost path (see
also Shirabe (2016)).

Yet, instead of modeling several alternative paths under one cost scenario, we here suggest to model
several LCPs under a set of highly likely scenarios because this strategy could maximize the likelihood
of taking into account the ’true’ LCP. It would mirror the growing interest for multi-model inference
(Burnham et Anderson, 2004) in ecological science where considering a single best model is often a
poor approximation of the stochastic ecological reality. Similarly, the set of highly likely scenarios could
be selected on the basis of a model fit criterion, e.g. the AIC (Burnham et Anderson, 2004). We ack-
nowledge that the alternative LCPs thereby identified may occupy very different spatial locations. In
such a case, their intersections may be the only information that can be used for conservation purposes.

Another strategy would be to limit the number of cost scenarios to maximize the contrasts between
them and their corresponding CD matrices, because statistical inference cannot distinguish them if
they are too strongly correlated (Zeller et al., 2016). Besides, although cost values inferred from such
an approach should be used carefully for locating LCPs, the CD matrices derived could be used for
estimating the importance of the locations linked by LCPs for the connectivity of a whole network
of patches using graph-theoretical connectivity metrics (Foltête et al., 2014). This could represent a
reliable alternative to the spatial application of the results of this type of inference. However, note that
when CD thresholds are used to define the connections between patches, we can expect the statisti-
cal distribution of CD values and consequently the range of the cost values to affect metric calculations.

Methodological perspectives for LCP modeling
Although the competing cost scenarios can be controlled until the very end of a study, the studied
landscape is determined in the early stages. We here showed that in landscapes with high propor-
tions of favorable land cover types, reduced land cover diversity and large contiguous patches, the
correlation coefficients between CD matrices deriving from very different cost scenarios consistently
reached high values. In such a case, it can be determined beforehand that the reliability of the cost
value inference will be reduced, as already shown by Cushman et al. (2013b). The sensitivity of LCPs
to cost scenarios should therefore be tested prior to any study if the main objective is to infer the
resistance to movements. For that purpose, we included the function link_compar() which computes
the spatial overlap between several sets of LCPs within the graph4lg package in R (Savary et al.,
2021b). This function makes it possible to specify the width of the least cost corridors. Indeed we
used here a constant total width of 400 m, which reflects the scale at which conservation measures
can be implemented following connectivity modeling (Ford et al., 2020 ; Spackman et Hughes, 1995)
and prevents overestimating the spatial overlap for short LCPs.
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The lower sensitivity of LCP modeling outputs to the cost scenarios in landscapes with large pro-
portions of favorable land cover types and large patches may be due to the sampling of points within
forests. Although this reflects the fact that connectivity analyses aim at identifying favorable paths
between similar habitat patches, it also means that whatever the forest cost value, these areas had
to be crossed by LCPs and over larger distances in such landscapes. This could have reduced the
differences between LCPs and CD matrices computed under different scenarios. Considering resis-
tance distances using the circuit theory (McRae, 2006) could have decreased the correlations between
distance matrices obtained with cost scenarios assigning different cost values to forests. In contrast,
using current maps of connectivity obtained from the circuit theory would probably have increased the
overall spatial overlap between the most similar cost scenarios due to the consideration of alternative
LCPs which are potentially shared across similar scenarios.

Finally we raised concerns about the risk of identifying cost scenarios in data based inference lea-
ding to incorrect qualitative and spatial output, while being highly correlated with biological responses.
Previous landscape genetic studies investigating the promises and pitfalls of cost surface parametriza-
tion from genetic data (Cushman et al., 2013b ; Graves et al., 2012, 2013 ; Koen et al., 2012 ; Spear
et al., 2010) should be completed by considering our results.
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Annexe A8

Inferring landscape resistance to gene flow using
gravity models

Abstract
Connectivity modelling requires to associate land cover types with cost values characterising their resistance to species

movements. Landscape genetic methods allow for the inference of these values from the relationship between genetic diffe-
rentiation and cost-distances. In this inference, the spatial heterogeneity of population sizes is usually not included while
it is known to influence genetic differentiation. Similarly, migration rates and population spatial distribution patterns are
potentially influencing this inference. Our objective was therefore to assess the reliability of cost value inference under several
migration rates, population spatial patterns and degrees of population size heterogeneity. We also wanted to assess whether
the inclusion of intra-population variables in gravity models improved this inference. To that purpose, we simulated several
intensities of gene flow between sets of populations of different sizes with various spatial distribution patterns. We then com-
puted gravity models explaining simulated genetic distances as a function of the ’true’ cost distance driving the simulation
as well as other alternative cost distances, and of intra-population variables, i.e. population sizes and patch areas. We aimed
at determining conditions making the identification of the ’true’ cost-distances and of their corresponding cost value scenario
possible and at assessing the contribution of intra-population variables to this objective. Cost value inference was reliable
in most cases but was hampered when migration was very restricted, population sizes were most heterogeneous and some
populations were spatially aggregated. We further demonstrate the interest that intra-population variables and gravity models
represent for the inference of cost values from genetic data.

Keywords : gravity models, landscape genetics, population genetics

Cet article est en préparation pour une soumission dans la revue X en 2021 :

Savary, P., Foltête, J. C., Moal, H., Vuidel, G. & Garnier, S. 2021. Inferring landscape resistance to gene flow using

gravity models. In prep.
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1 Introduction

Dispersal movements maintain genetic diversity and contribute to species survival in human-shaped
landscapes (Frankham, 2005 ; Spielman et al., 2004). Deriving efficient conservation measures to halt
the continuing erosion of biodiversity thus requires knowledge regarding the influence of landscape fea-
tures on species movements. To that purpose, landscape ecology studies have provided spatially-explicit
models for dispersal paths by quantifying the resistance of landscape features to dispersal (Zeller et al.,
2012). This implies assigning a cost value to every landscape feature on a resistance surface in order to
identify the most likely dispersal paths, e.g. using least cost path modelling (Adriaensen et al., 2003) or
applying circuit theory to ecological connectivity (McRae, 2006). However, these connectivity models
are only reliable under the condition that the cost values assigned to each landscape feature realistically
depict the behaviour of the species when moving across landscape features. Accordingly, although the
choice of cost values on resistance surfaces is often based upon expert opinion, a wide range of biolo-
gical data can be used to calibrate them so that they somehow fit ecological reality (Zeller et al., 2018).

Following the emergence of landscape genetics (Manel et al., 2003), genetic data have often been
used for calibrating cost values because the genetic structure of a set of populations depends upon the
structure of the landscape (Keyghobadi, 2007). Indeed, provided enough time has elapsed following
population settlement and last landscape changes for the genetic differentiation pattern to reach an
equilibrium, we can expect a positive linear relationship between genetic differentiation and effective
distances between populations (Hutchison et Templeton, 1999 ; McRae, 2006 ; Slatkin, 1993). The
Isolation By Landscape Resistance (IBLR) model is an extension of the original Isolation By Distance
(IBD) model to heterogeneous landscapes in which population spatial distribution is irregular and
effective distances are computed as cost-distances or resistance distances rather than geodesic Eucli-
dean distances (Guillot et al., 2009 ; McRae, 2006). In this context, the inference of cost values from
genetic data relies upon the IBLR model and consists in identifying the cost scenario which maxi-
mises the strength of the relationship between the corresponding cost-distances and genetic distances
among a set of alternative cost scenarios (Cushman et al., 2006 ; Graves et al., 2013 ; Peterman, 2018).

These approaches usually assume a preponderant influence of landscape-driven gene flow on gene-
tic differentiation (Richardson et al., 2016), although the latter is also substantially driven by genetic
drift. When a population is subdivided into several small populations, especially when their effective
sizes are reduced and the migration rate is low, genetic drift is responsible for a loss of genetic diversity
which tends to increase genetic differentiation between population pairs (Frankham, 1996 ; Frankham
et al., 2004 ; Hartl et al., 1997). According to theory, when the size of a population varies over time,
genetic drift will be most intense when the population is the smallest. Thus, the harmonic mean of the
population sizes over time is a reliable proxy for the intensity of drift over the whole period because
it weights smaller populations more heavily (Hartl et al., 1997 ; Prunier et al., 2017). Applying this
same theory to the spatial context of subdivided populations, Serrouya et al. (2012) and Weckworth
et al. (2013) showed that the harmonic mean of the population sizes of population pairs was a good
predictor of their pairwise genetic differentiation. Therefore, just as gene flow does not affect gene-
tic differentiation between all population pairs in the same way depending on the effective distances
between them, genetic drift does not affect genetic differentiation between all pairs in the same way
depending on their respective sizes.

162



Recently, Prunier et al. (2017) introduced the Spatial-Heterogeneity-in-Population-Sizes hypothesis
(SHNe) for assessing the contribution of population size spatial heterogeneity to genetic differentiation
patterns. Using both simulated and empirical data, they showed that when the migration rate is low
and the population size heterogeneity is high, pairwise population size heterogeneity contributes to
genetic differentiation more significantly than the distance between populations does. Furthermore,
these authors developed metrics measuring SHNe that can be included in the analysis of genetic diffe-
rentiation drivers. This makes it possible to account for drift spatial heterogeneity and to assess more
reliably the relationship between i) effective distances and ii) genetic distances, which then directly
reflects the spatial drivers of gene flow. Failing to do so may potentially lead to spurious conclusions
regarding dispersal patterns (Weckworth et al., 2013 ; Prunier et al., 2017). Accordingly, metrics quan-
tifying SHNe could be variables as important as the effective distances between populations under the
IBD or IBLR hypotheses for explaining the spatial genetic structure (Prunier et al., 2017). Yet, whe-
ther variables accounting for population size heterogeneity also improve cost value inference remains
to be investigated.

Estimating population effective sizes is a requisite for taking SHNe into account in the analyses,
but is undoubtedly a difficult task (Wang, 2005). Yet, they can be approximated with environmental
proxies for the carrying capacities of habitat patches occupied by populations (Prunier et al., 2017),
thereby saving costly field work. Furthermore, environmental variables computed at the population
level may reflect not only population sizes but also local incentives to departure or establishment
(Baguette et al., 2013 ; Bonte et al., 2012). Such variables have already been shown to influence si-
gnificantly genetic structure (Murphy et al., 2010a ; Wang, 2013 ; Wang et al., 2013), though seldom
considered in landscape genetic analyses (Pflüger et Balkenhol, 2014), and could positively contribute
cost value inference.

Finally, Graves et al. (2013) suggested that the spatial aggregation of individuals could prevent gene
flow between clumps of individuals thereby preventing gene flow from compensating for drift effects.
The influence of the spatial distribution pattern of individuals on the spatial genetic structure has
already been evidenced (Ueno et al., 2000). However, it is not known whether the population spatial
distribution pattern could influence cost value inference when populations are the focus of the analysis.

The objective of this study was to assess the reliability of cost value inference from genetic data
under several migration rates, population spatial distribution patterns and degrees of population size
heterogeneity. We expected the quality of the inference to be reduced when migration rates are limited,
population sizes are spatially heterogeneous and some populations are spatially aggregated. In addi-
tion, when population sizes are heterogeneous, we expected the inclusion of intra-population variables,
i.e. either population sizes or patch areas, to move the results of the analyses closer to the ecological
reality. Gravity models (Anderson, 1979 ; Fotheringham et O’Kelly, 1989) have already been used in
landscape genetics and allow for the test of these hypotheses because these models enable to assess
the influence of intra- and inter-population variables on measures of genetic differentiation (Murphy
et al., 2010a ; Robertson et al., 2018b ; Watts et al., 2015 ; Zero et al., 2017). When patch capacities or
population sizes and inter-patch distances are the predictor variables of the genetic distance between
populations, several models including different predictor variables can be compared on the basis of a
same measure of goodness-of-fit, which makes it potentially possible to identify the most realistic cost
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value scenario while accounting for SHNe.

Accordingly, we used a factorial design to simulate several intensities of gene flow between sets of
populations with varying levels of population size heterogeneities and spatial distribution patterns. We
then computed gravity models explaining simulated genetic distances as a function of the cost distance
driving the simulation as well as other alternative cost distances, and of intra-population variables, i.e.
population sizes and patch areas. We aimed at determining the conditions making cost value inference
possible and at identifying cases where the inclusion of intra-population variables helped identifying
the ’true’ cost scenario driving the gene flow simulations.

2 Methods

2.1 Overall methodological approach

We adopted a ’virtual ecologist’ approach (Zurell et al., 2010) in order to assess a commonly
used approach in landscape genetics for inferring landscape resistance from the relationship between
landscape distances and genetic distances. To that purpose, we simulated the genetic differentiation
pattern emerging through gene flow over several generations in a species with limited dispersal capa-
cities (Figure 51). We knew the ’true’ cost values associated with land cover types and the resulting
cost-distances (CD) driving dispersal in the simulated landscapes. Our objective was to assess the
capacity of landscape genetic models to identify this ’true’ cost scenario among a range of ’alternative’
cost scenarios diverging more or less from the ’true’ cost scenario. In particular, using regression trees,
we tried to delineate the range of situations over which gravity models including both inter-population
CD and intra-population variables improved cost value inference.

2.2 Simulations

2.2.1 Landscape and population simulations

When simulating landscapes, we ensured that patches were sufficiently large for cost-distances to
vary substantially according to the cost value scenario. Indeed, landscape fragmentation is known
to affect CD variability when using different cost scenarios (Cushman et al., 2013b ; Rayfield et al.,
2010). This variability ensures that alternative scenarios lead to different cost-distance matrices, the-
reby making the inference possible. To that purpose, we simulated 200 landscapes with four land cover
types using spatially correlated Gaussian random fields models (Schlather et al., 2015) and a level of
land cover auto-correlation leading to variable cost-distances across the cost scenarios (autocor=30 in
nlm_gaussianfield() function).

We simulated the movement of a forest specialist species with limited dispersal capacities avoiding
anthropogenic land cover types when dispersing, corresponding to a usual focal species of connectivity
studies. Accordingly, forests covered 20 % of the simulated landscapes and were the most permeable
areas for dispersal (cost : 1). Cost values and proportions of the other land cover types were set to
reflect the dispersal constraints of a forest specialist species in an heterogeneous landscape : grasslands
(cost : 10, proportion : 27%), crops (100, 27%) and artificial areas (1000, 26%). Similar cost values
have already been employed to analyse ecological connectivity for forest species (Gurrutxaga et al.,
2010 ; Schadt et al., 2002) and their range (1-1000) matches that inferred from field data in other
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studies (Khimoun et al., 2017 ; Pérez-Espona et al., 2008 ; Ruiz-González et al., 2014 ; Wang et al.,
2008). The resulting landscapes were raster grids of 60× 60 km with a cell resolution of 100 m.

The spatial heterogeneity of population sizes has been shown to explain a significant share of genetic
differentiation variation (Prunier et al., 2017) and one of the aims of our study was to assess whether
this heterogeneity could influence cost value inference. Besides, this spatial heterogeneity is partly
dependent upon the spatial distribution of the habitat patches as patch area is often positively related
with population sizes. Accordingly, we aimed at simulating a large range of patterns of population
sizes and habitat patch areas. We randomly sampled 60 populations within forest patches of every
landscape, separated by a distance larger than 1000 m. Habitat patches occupied by every population
consisted of a buffer made of the forest pixels located around each sampled point at a distance lower
than 500 m (Supporting information, Figure 54). This allowed us to vary the area of the habitat patches
according to the landscape structure. Then, we set population sizes between 10 and 100 individuals
with a total of 3300 individuals but we distinguished two spatial distributions of population sizes :

1. Equal population sizes (Equal) : all 60 populations contained 55 individuals.

2. Area-dependent population sizes (Area) : population size was heterogeneous and dependent upon
the area of the habitat patch occupied by the population.

The ’Equal’ setting constituted the reference baseline making it possible to assess the effect of
SHNe on the inference by comparison with the ’Area’ setting. For the ’Area’ setting, we aimed at
covering a wide gradient of SHNe while mimicking realistic conditions in which population sizes are
driven by patch areas. To that purpose, we randomly generated series of 60 values between 10 and
100 making a total of 3300 ± 50. We then classified these series according to their heterogeneity using
the Gini inequality index (Gini, 1912)(Supporting information, Figure 55). In parallel, we computed
the Gini index for describing the heterogeneity of the sampled patch areas in every landscape. We
then associated each landscape/population distribution with the population size distribution corres-
ponding to a degree of heterogeneity equivalent to that of patch area. Largest population sizes were
therefore assigned to populations located in the largest patches. In every case, the maximum popula-
tion density was equal to 2 individuals per hectare of forest. We then calculated the accumulated cost
along the least-cost path between each pair of populations, thereafter referred to as cost-distance (CD).

Apart from simulating a large range of population size and patch area heterogeneity patterns, we
also ensured that we simulated diverse patterns of population spatial distributions in order to test
for the influence of the population spatial pattern on the inference. Indeed, the presence of clumps
of populations exchanging more frequently between themselves than with other populations could
influence our capacity to infer landscape resistance to gene flow (Graves et al., 2013). To test for
this potential influence, we measured the degree of spatial aggregation of the populations with the
harmonic mean of the whole set of CD values between populations. This index reflects the frequency
of small CD values which should favour short distance dispersal as a consequence of population spatial
aggregation.

2.2.2 Alternative cost-scenarios

Identifying situations in which landscape genetic models are able to identify the ’true’ cost-value
scenario among alternative cost-scenarios requires that the CD values resulting from all these cost
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scenarios are not too highly correlated so that they can somehow be distinguished (Cushman et al.,
2013b). Rayfield et al. (2010) have shown that least-cost paths were sensitive to the range of relative
cost values. Accordingly, alternative CD distributions resulted from 296 randomly generated alter-
native cost-scenarios. We used Shirk et al. (2010) approach to set alternative cost values using the
following function :

Ci = ( Ranki
Rankmax

)x × Cmax

where Ci is the cost value between 1 and Cmax associated with the i-th land cover type. Ranki is the
rank of the land cover type i between 1 and Rankmax = 4. Because the maximum cost value provides
insight into the contrast between the most and least favourable land cover type for species dispersal,
we used Cmax values equal to 100, 1000 (maximum value of the ’true’ cost scenario) and 10,000. We
used x values equal to 1, 2, 4, 8 or 16. We therefore obtained 5 series of values for every maximum
cost value. Using each of them, we randomly assigned cost values to the four land cover types and
randomly selected 296 alternative cost scenarios among these combinations. We then used these cost
scenarios to compute the 296 alternative CD distributions in every landscape and we computed the
Mantel r correlation coefficient between each alternative CD distribution and the ’true’ one (Figure
51). This setting provided us with alternative cost-scenarios covering a gradient of similarity with the
’true’ cost-scenario.

2.2.3 Gene flow simulation

We used cdpop software (Landguth et Cushman, 2010) for simulating gene flow and individual
allelic state resulting from it. Population sizes and sex-ratio (equal to 1) remained constant throughout
the simulations, which lasted for 500 generations to ensure that the equilibrium genetic differentia-
tion pattern had been reached. At each generation, individuals mated in their own population and
juveniles could disperse for establishing themselves in other populations. The number of offspring per
female followed a Poisson distribution (λ = 3). Once every population was occupied by a number of
individuals equal to its specific size, remaining individuals died. Generations were non-overlapping and
mating was done with replacement for males only. Individual genotype was simulated for 20 loci with
30 alleles per locus because high allelic richness is known to limit the risk of size homoplasy (Estoup
et al., 1995, 2002). Initial genotypes were randomly assigned at generation 0. There was no selection
pressure but mutations could occur (k-alleles mutation model, µ = 0.0005).

According to the concept of dispersal kernel, dispersal probability decreased quickly as inter-
population CDij between populations i and j increased, even if long distance dispersal remained
possible (Clobert et al., 2012). Therefore, dispersal probability pij between populations i and j fol-
lowed a negative exponential distribution (Urban et Keitt, 2001) and was a function of CDij , such
that pij = e−βCDij . β values were calculated such that the CD for which the dispersal probability
was equal to 0.01 was equivalent to 1000 cost units, imposing the simulated species constant dispersal
limitations over the range of cases.

Prunier et al. (2017) showed that the contribution of SHNe to the spatial pattern of genetic diffe-
rentiation also depended upon the migration rate and we therefore carried out these simulations with
migration rates equal to 0.0005, 0.001, 0.002 and 0.005 to identify the influence of this parameter on
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the cost value inference and on SHNe. Preliminary analyses showed that migration rates above 0.005
led to situations in which gene flow was too important for heterogeneous drift effects to influence
the inference whereas migration rates below 0.0005 led to situations in which drift effects were too
strong for inference to be possible, whatever the landscape and population parameters. In total, 1000
simulations were performed.

After the simulations, we used population genotypes at generation 500 to compute the pairwise
DPS between populations, i.e. the population-based version of a genetic distance equal to 1 - the
proportion of shared alleles (Bowcock et al., 1994). This genetic distance has been shown to reflect
well landscape resistance influence on genetic differentiation patterns in previous simulation analyses
using similar settings (Savary et al., 2021a).

2.3 Gravity models

Gravity models have been initially used in geography and economics (Anderson, 1979 ; Fotherin-
gham et O’Kelly, 1989 ; Schneider et al., 1998) to model various types of spatial interactions. Their
application in ecology (Bossenbroek et al., 2001, 2007 ; Ferrari et al., 2006 ; Kong et al., 2010 ; Xia
et al., 2004) and in landscape genetics (DiLeo et al., 2014 ; Moran-Lopez et al., 2016 ; Murphy et al.,
2010a ; Robertson et al., 2018b ; Watts et al., 2015 ; Zero et al., 2017) is more recent. They model
spatial interaction or fluxes as a function of both the variables characterizing the objects involved in
the interaction and of the distance between them (masses and distance in Newton’s gravity theory,
respectively). Here, we used them to model the genetic distance Gij between populations i and j

(response variable, link-level) as a function of several predictors computed at the population-level
(nodes) or between populations (link-level) : cost-distance CDijk between populations i and j in the
cost scenario k, patch areas (ai, aj) and population sizes (Ni, Nj). We computed three types of models
of the following form in order to test for our hypotheses :

Cost : Gij ∼ c× CDm
ijk

Cost-Area : Gij ∼ c× CDm
ijk × ani × aoj

Cost-Ne : Gij ∼ c× CDm
ijk ×N

p
i ×N

q
j

c was a constant. We computed these three models using the CD values obtained with every ’true’
or alternative cost scenario. A natural log was applied to these formula to obtain the classical formula
of a multiple regression model whose parameters (c, m, n, o, p and q in our case) can be estimated.
To account for the non-independence inherent to distance matrices, we performed constrained models
by adding a random effect corresponding to the identity of the population i (MLPE models, Clarke
et al. (2002)).

2.4 Assessment of model performance

We assessed the quality of the cost inference in the different situations and identified the situations
in which the models including intra-population variable improved this inference (Figure 51). From
these results, we aimed at deriving general guidelines for cost value inference in landscape genetics.

We first used Edward’s R2
β (Edwards et al., 2008) to assess the goodness of fit because other model

selection criteria are not relevant when fitting mixed models with residual maximum likelihood estima-
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tion (Van Strien et al., 2012). Under our settings, if a given model (’Cost’, ’Cost-Area’ or ’Cost-Ne’)
performs well in distinguishing among cost scenarios, the largest R2

β values should be obtained when
the CD values included in this model are the most correlated with the ’true’ cost-distance values dri-
ving the simulation. In contrast, when a model behaves badly, the ranks of the models obtained with
the different cost scenarios according either to the R2

β values or to their correlation with the ’true’ cost-
scenario should be independent. To quantify the performance of every model in every case, we therefore
computed the Spearman rank correlation coefficient rSp between the series of R2

β values obtained for
each cost scenario and the Mantel r correlation coefficient comparing each cost scenario to the ’true’
one. In a given case, we expected the difference D between the rSp value associated with the ’Cost-
Area’ or ’Cost-Ne’ models and the rSp value associated with the ’Cost’ model to take positive values
if the inclusion of intra-population variables in the model improves the cost-value inference (Figure 51).

Finally, we assessed the influence of every simulation parameter on the additional performance of
the models including intra-population variables, measured byD values, using regression trees (Breiman
et al., 1984). This method involves splitting the predictor space into a limited number of regions called
leaves in which the response variable is predicted to take its mean value within the leaf (James et al.,
2013). It can take both continuous and categorical predictor variables. Apart from performing better
than linear models (ANOVA) in our case due to non-linear relationships, it provided us with a decision
tree showing situations in which including intra-population variables helps identifying cost values. To
that purpose, the response variable was D and we used the migration rate, the type of models, the
Gini index of patch areas and the harmonic mean of the ’true’ CD between populations as predictor
variables. Regression trees were pruned with a criterion ensuring that at least 40 landscape and po-
pulation configurations were included in every leaf, to prevent from overfitting. This minimal sample
size allowed us to perform a one-side Student test to test for significant positive values ofD in each leaf.

We carried out our analyses in R using NLMR package (Sciaini et al., 2018) to simulate landscapes,
graph4lg package (Savary et al., 2021b) to sample populations, compute cost-distances, genetic dis-
tances and patch areas, nlme (Pinheiro et al., 2013), lme4 (Bates et al., 2007) and r2glmm (Jaeger,
2017) packages to fit gravity models and assess their goodness of fit and rpart package (Therneau
et al., 2010) to fit regression trees.

3 Results

3.1 Simulation results

Overall, the landscape simulation settings allowed us to vary the degree of patch area heteroge-
neity and population spatial aggregation. We selected 125 landscapes maximising their contrasts. The
variation of the Gini indices, ranging from 0.170 to 0.290 (median : 0.232), outlines the simulation of
contrasted population size distributions in the ’Area’ settings. The spatial aggregation of populations
also varied substantially with harmonic means of ’true’ CD values ranging from 170 to 430 CD units
(median : 297). Besides, these simulated landscapes were sufficiently heterogeneous for the CD ma-
trices derived from alternative cost scenarios to exhibit a wide range of correlations with the true CD
matrix, with Mantel coefficients of correlation between the ’true’ CD matrix and the alternative ones
ranging from -0.350 to 0.999 (median : 0.628).
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During the gene flow simulations, the mean number of migrants between the 60 populations per
generation was equal to 2.0, 3.7, 7.1 and 17.3 with migration rates of 0.0005, 0.001, 0.002 and 0.005,
respectively. Larger migration rates made long distance dispersal events more frequent, such that after
50 generations, the number of different dispersal paths followed by individuals averaged 84 (± 15), 145
(± 16), 240 (± 26) and 423 (± 68) with migration rates of 0.0005, 0.001, 0.002 and 0.005 respectively,
although there were important variations among landscapes. This led to contrasted influences of genetic
drift relative to gene flow in these situations and contrasted influences of large distance dispersal events
on genetic differentiation.

3.2 Gravity models

R2
β values obtained for a given simulation and model with different CD values exhibited large

variations meaning that the models were able to distinguish cost scenarios among them (Table 18).
For all models, population size heterogeneity settings (Equal, Area) and cost scenarios, the lowest
model goodness of fit were obtained for the lowest migration rate (0.0005) and the largest values for
the highest migration rate (0.005). Although the median R2

β values were always larger when including
the ’true’ CD values in the models rather than the alternative CD values, we observed the opposite
trend when considering the maximum R2

β values (Table 18). This means that in every case, the model
with the best goodness of fit was computed with CD values not deriving from the ’true’ cost scenario
driving dispersal in our simulation. The few alternative scenarios responsible for these results diffe-
red from the ’true’ cost scenario by their absolute cost values, by how the different land cover types
were ordered according to these values or by both criteria (e.g. [1, 4, 1000, 101], [1, 40, 1002, 10000],
[1, 40, 10000, 1002], [40, 625, 10000, 3165] instead of [1, 10, 100, 1000]). They often assigned low values
to forest and grasslands but tended to assign a higher cost to crops than to artificial areas.

The Spearman rank correlation coefficients rSp between the R2
β values obtained using alternative

CD values in the model and the correlation coefficients between the ’true’ CD values and these alter-
native CD values took large values, with mean values ranging from 0.782 to 0.944 (Table 19). This
means that models with the best goodness of fit were obtained when considering cost scenarios similar
to the ’true’ cost scenario. Therefore, the models performed well in inferring cost values and it was
true even in cases where overall R2

β values were low (Tables 18 and 19).

When population sizes were heterogeneous and depended on patch area, especially when the mi-
gration rate was low (0.0005 or 0.001), rSp values were more variable (Table 19). They took slightly
lower values than when using similar migration rates and models (’Cost’, ’Cost-Area’) but with equal
population sizes, meaning that SHNe had overall a negative influence on the reliability of cost value
inference in these cases. Besides, the differences between rSp values obtained with the ’Cost’ model
and either the ’Cost-Area’ or ’Cost-Ne’ models in the ’Area’ case were larger with the lowest migration
rates (Table 19). In particular, although maximum rSp values obtained using either the ’Cost’ model
and the ’Cost-Area’ or ’Cost-Ne’ models were relatively similar, their respective median and mean
values were more different ; those obtained with the latter models being larger than those obtained
with the former (Table 19). This means that although in some landscapes, including intra-population
variables provided a very slight advantage, there were landscapes in which it improved the quality of
the inference more significantly. In the next section we therefore focus on the results obtained with
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Pop. sizes Mig. rate Model Median R2
β Max R2

β

TRUE ALTER TRUE ALTER

Equal 0.0005 Cost 0.053 0.036 0.117 0.525
Equal 0.0005 Cost-Area 0.055 0.039 0.117 0.547
Equal 0.001 Cost 0.147 0.107 0.294 0.463
Equal 0.001 Cost-Area 0.151 0.111 0.294 0.475
Equal 0.002 Cost 0.337 0.227 0.519 0.584
Equal 0.002 Cost-Area 0.344 0.233 0.521 0.590
Equal 0.005 Cost 0.558 0.380 0.774 0.776
Equal 0.005 Cost-Area 0.562 0.388 0.774 0.776
Area 0.0005 Cost 0.087 0.063 0.210 0.432
Area 0.0005 Cost-Area 0.100 0.074 0.239 0.439
Area 0.0005 Cost-Ne 0.099 0.073 0.236 0.442
Area 0.001 Cost 0.182 0.133 0.344 0.446
Area 0.001 Cost-Area 0.194 0.142 0.367 0.458
Area 0.001 Cost-Ne 0.193 0.142 0.372 0.471
Area 0.002 Cost 0.334 0.234 0.546 0.543
Area 0.002 Cost-Area 0.345 0.242 0.548 0.545
Area 0.002 Cost-Ne 0.345 0.242 0.547 0.545
Area 0.005 Cost 0.539 0.366 0.732 0.735
Area 0.005 Cost-Area 0.554 0.372 0.734 0.736
Area 0.005 Cost-Ne 0.554 0.373 0.733 0.737

Table 18 – Goodness of fit of the gravity models as measured with R2
β according to the heterogeneity of population

size settings (Equal, Area), the migration rate (0.0005, 0.001, 0.002, 0.005), the variables included in the models and
the cost scenarios corresponding to the CD values included in the models. TRUE means that the models include the
’true’ CD values driving the simulations whereas ALTER means that the models include the alternative CD values.
Reported values were averaged over the different landscapes, simulation runs and cost scenarios (ALTER case only).

the two lowest migration rates to explain the differences of model performance in some landscapes
with a regression tree considering landscape characteristics.

3.3 Regression trees

When population sizes depended on patch areas (’Area’), the difference of performance D between
models including CD values only (’Cost’) and gravity models including both CD values and intra-
population variables such as patch areas or population sizes (’Cost-Area’, ’Cost-Ne’) averaged 0.050
overall when the migration rate was either 0.0005 or 0.001 (Figure 52) and ranged from -0.330 to 0.590
(see figures S56 and S57 for similar results when considering all the migration rates). The best pru-
ned regression tree explaining D contained migration rate, CD value harmonic mean and patch area
Gini index as predictor variables but did not include the type of model. There were indeed negligible
differences of D values between the ’Cost-Area’ and ’Cost-Ne’ models (Table 19). This regression tree
explained 86 % of the variations of D and was made of six leaves corresponding to different regions
of the predictor space (Figures 52 and 53). Values of D were significantly different from 0 in five of
these leaves and positively in all five cases (one-side Student tests, α = 0.05, with Bonferroni p-value
adjustments)(Figure 53).

According to the splitting rules of the regression tree (Figure 52), when small CD values were
frequent (Cd.harm.mean < 225), adding intra-population variables improved cost value inference as
D values reached an average of 0.140 in these cases. The second splitting rule evidenced that the
advantage provided by the inclusion of intra-population variables in cost value inference was larger
when the patch areas were the most heterogeneous. Indeed, when the Gini index was larger than
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Figure 52 – Regression tree obtained when considering five predictors (Model, Mig.rate, CD.harm.mean, Area.gini) to
explain the response variable D. Only the cases corresponding to the scenario in which population size and habitat

patch areas are rank-correlated, and migration rates are equal to 0.0005 or 0.001, are considered. The tree was pruned
in order to have at least 40 observations in every leaf. The total number of observations is 500. The numbers in the
boxes refer to the mean values of D for each leaf of the tree. The percentages refer to the proportions of the 500

observations included in each leaf.
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Pop. sizes Mig. rate Model Min. rSp Median rSp Mean rSp Max rSp
Equal 0.0005 Cost -0.526 0.838 0.782 0.980
Equal 0.0005 Cost-Area -0.606 0.848 0.790 0.982
Equal 0.001 Cost -0.265 0.910 0.874 0.983
Equal 0.001 Cost-Area -0.392 0.919 0.878 0.984
Equal 0.002 Cost 0.259 0.938 0.915 0.988
Equal 0.002 Cost-Area 0.186 0.943 0.917 0.984
Equal 0.005 Cost 0.628 0.957 0.944 0.989
Equal 0.005 Cost-Area 0.646 0.961 0.944 0.988
Area 0.0005 Cost -0.452 0.816 0.727 0.971
Area 0.0005 Cost-Area -0.397 0.872 0.798 0.974
Area 0.0005 Cost-Ne -0.431 0.871 0.797 0.974
Area 0.001 Cost -0.046 0.889 0.837 0.981
Area 0.001 Cost-Area -0.149 0.907 0.866 0.982
Area 0.001 Cost-Ne -0.227 0.910 0.865 0.982
Area 0.002 Cost 0.118 0.932 0.904 0.986
Area 0.002 Cost-Area 0.021 0.943 0.914 0.986
Area 0.002 Cost-Ne -0.027 0.940 0.912 0.986
Area 0.005 Cost 0.656 0.960 0.943 0.989
Area 0.005 Cost-Area 0.661 0.960 0.944 0.988
Area 0.005 Cost-Ne 0.666 0.960 0.944 0.988

Table 19 – Spearman rank correlation coefficients (rSp) between the R2
β of the models and the correlation coefficients

between the ’true’ CD values and each alternative CD values, according to the heterogeneity of population size settings
(Equal, Area), the migration rate (0.0005, 0.001, 0.002, 0.005) and the variables included in the models. Large values

indicate that the models are able to identify the cost scenarios most similar to the ’true’ one.

0.27, D values averaged 0.080 whereas they were halved for lower degrees of patch area heterogeneity.
In the latter case, mean D values were equal to 0.020 and 0.050 for migration rates equal to 0.001
and 0.0005, respectively (Figure 52), meaning that gravity models improved more substantially the
inference when migration rate was the lowest. Then, when the migration rate was equal to 0.0005,
although cases in which the harmonic mean of CD values was lower than 253 led to small D values
(0.015), cases in which this index was between 253 and 331 led to much larger values (0.071)(Figure
52). Besides, when this harmonic mean was larger than 331, D values averaged 0.034, meaning that the
inclusion of intra-population variables seemed to improve cost-value inference in several cases where
the populations were spatially aggregated according to this index. Note that the interpretation of
the regression tree obtained when considering all the migration rates was similar, although the first
splitting rules separated cases corresponding to the two largest migration rates (Figures S56 and S57).
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Figure 53 – Distribution of D in each leaf of the regression tree displayed on figure 52(refer to this figure for the leaf
numbers). Only the cases corresponding to the scenario in which population size and habitat patch areas are

rank-correlated, and migration rates are equal to 0.0005 or 0.001, are considered.
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4 Discussion

4.1 Is cost value inference from genetic data reliable ?

Overall, the models performed well in inferring cost values, which confirms the interest of genetic
data in this type of analysis, as suggested by Beier et al. (2008) and empirically validated by Zeller
et al. (2018). Models with the lowest goodness of fit and capacity to identify the most realistic cost
scenarios were obtained when migration rates were the lowest. This may stem from the stronger in-
fluence of drift relative to gene flow on genetic differentiation in these cases (Hutchison et Templeton,
1999). Yet, even with these low migration rates, the different models still performed relatively well in
ranking several cost value scenarios according to their similarity with the ’true’ cost scenario. This
means that even when signal to noise ratios are low, inferring landscape resistance to gene flow is
possible with genetic data.

Nonetheless, the ’alternative’ cost scenarios leading to the CD values most correlated to the ’true’
CD values were often identified as the ’best’ ones according to a model goodness-of-fit criterion. These
scenarios were different from the ’true’ scenario in both their absolute cost values and the relative
ranking of these values. Such an erroneous output could lead to wrong conservation measures if used
for the spatial modelling of potential dispersal paths. Indeed, closely correlated cost-distance values
can correspond to least-cost paths that are spatially distinct (Savary et al., in prep.). Retaining the set
of cost scenarios resulting in high values of goodness-of-fit and deriving a set of least-cost paths from
them could be a way to account for the uncertainty of the inference when competing cost distances
matrices are highly correlated (Rayfield et al., 2010). Besides, in this study, we ensured that there
was some variability among the cost scenarios when simulating both these cost scenarios and the
landscapes. Yet, in many landscapes and/or study designs, these conditions are likely not to be met
which could compromise the reliability of the inference, even in situations here identified as being
optimal. Similarly, Cushman et al. (2013b) and Graves et al. (2013) observed that when different
cost scenarios lead to highly correlated cost-distance matrices, cost value inference is more difficult.
Therefore, it would be useful to identify landscape properties responsible for the similarity of cost
scenarios, prior to cost value inference.

4.2 Does SHNe influence cost value inference ?

In accordance with our hypothesis, population size heterogeneity tended to lessen the quality of
cost value inference from genetic data when migration rates were the lowest (5 × 10−4, 10 × 10−4).
This inference relies upon the assumption that genetic differentiation reflects landscape influence
on gene flow (Savary et al., 2021a). It is therefore complicated by the fact that genetic drift adds
random noise to the gene flow signal in genetic differentiation, especially when migration rates are
low and populations are small (Frankham, 1996). We here evidence that an additional difficulty arises
when population sizes are spatially heterogeneous because this random noise is not homogeneously
distributed, which makes it even more difficult to infer landscape resistance to gene flow from genetic
differentiation.
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4.3 Can we improve cost value inference by taking SHNe into account in gravity
models ?

In order to take SHNe into account in the cost value inference, we computed gravity models in which
both CD values and intra-population variables such as patch areas (’Cost-Area’) and population sizes
(’Cost-Ne’) were predictor variables explaining pairwise genetic distances between populations. In cases
where SHNe influenced cost value inference, the inclusion of intra-population variables in these models
improved the quality of the cost value inference (positive D values) in accordance with our hypothesis.
Our results therefore extend to the specific context of cost value inference the recommendation of
Prunier et al. (2017) to account for SHNe in landscape genetic analyses.

4.4 When should intra-population variables be included in gravity models for cost
value inference ?

The interest of including intra-population variables in gravity models for inferring cost values was
not only dependent upon the migration rates and the heterogeneity of population sizes, it also depen-
ded upon the degree of this population size heterogeneity and of the spatial aggregation pattern of the
populations. On the one hand, D values were larger in cases where patch areas, and related population
sizes, were most heterogeneous according to the Gini index of inequality. This result is similar to that
of Prunier et al. (2017) although these authors quantified overall population size heterogeneity using
the coefficient of variation of these sizes.

On the other hand, in accordance with our hypothesis, the spatial aggregation of the populations
tended to decrease the quality of cost value inference. We used the harmonic mean of CD values for
distinguishing landscapes in which gene flow events frequently occurred at a restricted scale because
populations tended to form spatial aggregates. Thus, this result could potentially stem from the fact
that when population sizes are heterogeneous and dependent upon habitat patch areas, the spatial
aggregation of populations in the most favourable areas of the landscapes increases the frequency of
gene flow events between neighbour populations of large sizes. This could in turn increase their genetic
differentiation from both i) other small and isolated populations and ii) large populations from other
’clusters’ of populations, making it more difficult to relate the overall genetic differentiation pattern
with landscape matrix resistance. The latter point had been suggested by Graves et al. (2012) and
Graves et al. (2013) but was not specifically investigated in the context of cost value inference.

Both population size heterogeneity and spatial aggregation are parameters directly related with
the amount and configuration of the habitat and with the spatial distribution of the populations in
this habitat. They influenced significantly the cost value inference. This means that independently
from the study species and its specific migration rate, landscape structure and in particular habitat
spatial distribution are parameters to consider when planning a study aiming at inferring landscape
influence on gene flow, as pointed out by Cushman et al. (2013b).

In addition, we showed that landscape variables computed from the habitat spatial pattern at
the population level could improve the cost value inference when included in gravity models. Indeed,
considering either patch area or population sizes in the gravity models led to similar results in cases
where including intra-population variables improved cost value inference. These two variables were
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rank-correlated but not directly proportional in our settings. This situation is likely to be met in
most real cases when patch area drives their carrying capacity and subsequently their population
size. Thus, including environmental proxies for population size in gravity models could improve cost
value inference in many situations. This result reinforces that of Prunier et al. (2017) which used river
width and home-range sizes as environmental proxies for gudgeon (Gobio occitaniae) population sizes
and this way estimated a significant share of SHNe effects on genetic differentiation. It also means
that costly estimations of population sizes through field works could be saved when there is a close
relationship between some environmental variables and population sizes.

4.5 Limits and perspectives

The migration rates for which we observed a significant influence of SHNe on cost value inference
were rather low. However, they reflect realistic situations given that inferred genetic migration rates
are often much lower than inter-patch movement rates (0.5 % versus 7-32 % respectively in Riley et al.
(2006) study) and very low migration rates have often been inferred from genetic data (Meirmans,
2014). In addition, this result is consistent with that of Prunier et al. (2017) even if we here used
migration rates in the lower end of the migration rates these authors used. However, our study had
different objectives and although our results show that intra-population variables help inferring cost
values when gene flow is very reduced, they do not mean that SHNe is not substantially affecting
genetic differentiation for larger migration rates.

Finally, in our simulations, we considered that we knew and sampled the exhaustive set of popula-
tions. In practice, exhaustive sampling is rarely possible, although strongly recommended (Van Strien,
2017), and we can wonder to what extent our results would be affected by considering only a subset
of the populations. Yet, when sampling is not exhaustive, gravity models could reveal helpful for pre-
dicting genetic distance between non-sampled populations provided they have a high goodness of fit
and can be reliably extrapolated. Given the gain in performance provided by these models in certain
situations, this would make these models relevant tools for deriving predictions in landscape genetics.
However, in most situations where adding intra-population variables may be interesting for predicting
more reliably genetic differentiation, drift effects are very strong and may generate high variability
in genetic differentiation, thereby making predictions highly variable and potentially imprecise. The
predictive use of these models thus deserves further investigation and would probably be more relevant
when intra-population variables reflect processes affecting both population size and dispersal (Pflü-
ger et Balkenhol, 2014 ; Watts et al., 2015). In this context, landscape graphs, which are commonly
used for modelling connectivity and include both patch (node) and potential dispersal paths (links)
characteristics, would be an adequate tool as their structure directly provides the inputs of gravity
models. Besides, some variables influencing cost value inference such as patch area heterogeneity or
patch spatial aggregation could be computed from different landscape graphs before hand as a way to
identify contexts in which inference would be most reliable when SHNe effects are at play.

5 Conclusion

Landscape genetic studies have soon considered matrix heterogeneity when inferring landscape re-
sistance to gene flow. In contrast, they have rarely considered the simultaneous influence of migration
rates, population size heterogeneity and population spatial aggregation on this type of inference. Here,

177



we showed that cost value inference from genetic data is reliable in a wide range of conditions but
is hampered when migration is very restricted, population size is heterogeneous and populations are
not regularly distributed in the landscape. Our study further demonstrates the interest that intra-
population variables, such as population sizes or their proxies, represent for genetic differentiation
analyses. It extends it to the context of cost value inference and shows that gravity models are ap-
propriate for the inclusion of these variables in the inference of cost values associated with land cover
types.
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A - Supplementary figures

500 m radius grid

Raster cell (100x100m)

2 indiv. max. per cell
61 cells max.

per patch

Minimum distance between points: 1000 m

High quality forest (patch)

Habitat patch
(resistance: 1)

Sampled point

Low quality forest

Forest patch
(resistance: 1)

Figure 54 – Method used for calculating patch capacities from the simulated landscapes and the sampled points
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Figure 55 – Method used for assigning population sizes to the sampled populations according to the patch area
heterogeneity
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Figure 56 – Regression tree obtained when considering seven predictors (Pop.size, Model, Mig.rate, CD.harm.mean,
Area.gini) to explain the response variable D. The tree was pruned in order to have at least 40 observations in every
leaf. Only the cases corresponding to the scenario in which population size and habitat patch areas are rank-correlated
are considered. The total number of observations is 1000. The numbers in the boxes refer to the mean values of D for

each leaf of the tree. The percentages refer to the proportions of the 1000 observations included in each leaf.
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Figure 57 – Distribution of D in each leaf of the regression tree displayed on figure 56(refer to this figure for the leaf
numbers). Only the cases corresponding to the scenario in which population size and habitat patch areas are

rank-correlated are considered.
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